Humanization of an anti-p185HER2 antibody for human cancer therapy.

Department of Protein Engineering, Genentech Inc., South San Francisco, CA 94080.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 06/1992; 89(10):4285-9. DOI: 10.1073/pnas.89.10.4285
Source: PubMed

ABSTRACT The murine monoclonal antibody mumAb4D5, directed against human epidermal growth factor receptor 2 (p185HER2), specifically inhibits proliferation of human tumor cells overexpressing p185HER2. However, the efficacy of mumAb4D5 in human cancer therapy is likely to be limited by a human anti-mouse antibody response and lack of effector functions. A "humanized" antibody, humAb4D5-1, containing only the antigen binding loops from mumAb4D5 and human variable region framework residues plus IgG1 constant domains was constructed. Light- and heavy-chain variable regions were simultaneously humanized in one step by "gene conversion mutagenesis" using 311-mer and 361-mer preassembled oligonucleotides, respectively. The humAb4D5-1 variant does not block the proliferation of human breast carcinoma SK-BR-3 cells, which overexpress p185HER2, despite tight antigen binding (Kd = 25 nM). One of seven additional humanized variants designed by molecular modeling (humAb4D5-8) binds the p185HER2 antigen 250-fold and 3-fold more tightly than humAb4D5-1 and mumAb4D5, respectively. In addition, humAb4D5-8 has potency comparable to the murine antibody in blocking SK-BR-3 cell proliferation. Furthermore, humAb4D5-8 is much more efficient in supporting antibody-dependent cellular cytotoxicity against SK-BR-3 cells than mumAb4D5, but it does not efficiently kill WI-38 cells, which express p185HER2 at lower levels.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Advances in high-throughput genomic-scanning have expanded the repertory of genetic variations in DNA sequences encoding ErbB tyrosine kinase receptors in humans, including single nucleotide polymorphisms (SNPs), polymorphic repetitive elements, microsatellite variations, small-scale insertions and deletions. The ErbB family members: EGFR, ErbB2, ErbB3, and ErbB4 receptors are established as drivers of many aspects of tumor initiation and progression to metastasis. This knowledge has provided rationales for the development of an arsenal of anti-ErbB therapeutics, ranging from small molecule kinase inhibitors to monoclonal antibodies. Anti-ErbB agents are becoming the cornerstone therapeutics for the management of cancers that overexpress hyperactive variants of ErbB receptors, in particular ErbB2-positive breast cancer and non-small cell lung carcinomas. However, their clinical benefit has been limited to a subset of patients due to a wide heterogeneity in drug response despite the expression of the ErbB targets, attributed to intrinsic (primary) and to acquired (secondary) resistance. Somatic mutations in ErbB tyrosine kinase domains have been extensively investigated in preclinical and clinical setting as determinants for either high sensitivity or resistance to anti-ErbB therapeutics. In contrast, only scant information is available on the impact of SNPs, which are widespread in genes encoding ErbB receptors, on receptor structure and activity, and their predictive values for drug susceptibility. This review aims to briefly update polymorphic variations in genes encoding ErbB receptors based on recent advances in deep sequencing technologies, and to address challenging issues for a better understanding of the functional impact of single versus combined SNPs in ErbB genes to receptor topology, receptor-drug interaction, and drug susceptibility. The potential of exploiting SNPs in the era of stratified targeted therapeutics is discussed.
    Frontiers in Genetics 01/2015; 6:17. DOI:10.3389/fgene.2015.00017
  • [Show abstract] [Hide abstract]
    ABSTRACT: Growth factors of the EGF family and their respective ErbB/HER receptor tyrosine kinases underlie many landmarks of tumor cells, including excessive growth, invasive behavior and attraction of blood vessels. Enhanced expression of ErbB proteins, existence of permanently active receptor mutants and occurrence of autocrine loops are frequently observed in human cancer, and in some cases they associate with poor disease outcome. The four ErbB proteins and their 11 ligands act within a layered signaling network coordinated by ErbB-2/HER2, the most oncogenic family member. Drugs that intercept signals emanating from ErbB-2 and ErbB-1 are already in routine clinical application. Here we review three major strategies to develop new ErbB-targeted therapies. These are monoclonal anti-receptor antibodies, specific tyrosine kinase inhibitors and antagonists of heat shock protein 90. The underlying mechanisms are critically examined, with an emphasis on potential drug combinations, which hold promise for enhanced clinical efficacy.
    Seminars in Cancer Biology 05/2004; DOI:10.1016/S1044-579X(04)00022-7 · 9.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human VH single domains represent a promising class of antibody fragments with applications as therapeutic modalities. Unfortunately, isolated human VH domains also generally display poor biophysical properties and a propensity to aggregate. This has encouraged the development of non-human antibody domains as alternative means of antigen recognition and, in particular, camelid (VHH) domains. Naturally devoid of light chain partners, these domains are characterized by favourable biophysical properties and propensity for cleft binding, a highly desirable characteristic, allowing the targeting of cryptic epitopes. In contrast, previously reported structures of human VH single domains had failed to recapitulate this property. Here we report the engineering and characterization of phage display libraries of stable human VH domains, and the selection of binders against a diverse set of antigens. Unlike "camelized" human domains, the domains do not rely on potentially immunogenic framework mutations and maintain the structure of the VH/VL interface. Structure determination in complex with hen egg-white lysozyme revealed an extended VH binding interface, with complementarity determining region 3 (CDR3) deeply penetrating into the active site cleft, highly reminiscent to what has been observed for camelid domains. Taken together, our results demonstrate that fully human VH domains can be constructed that are not only stable and well-expressed, but also rival the cleft binding properties of camelid antibodies. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.


Available from