Article

Nonreplicating vaccinia vector efficiently expresses recombinant genes.

Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 12/1992; 89(22):10847-51. DOI: 10.1073/pnas.89.22.10847
Source: PubMed

ABSTRACT Modified vaccinia Ankara (MVA), a highly attenuated vaccinia virus strain that has been safety tested in humans, was evaluated for use as an expression vector. MVA has multiple genomic deletions and is severely host cell restricted: it grows well in avian cells but is unable to multiply in human and most other mammalian cells tested. Nevertheless, we found that replication of viral DNA appeared normal and that both early and late viral proteins were synthesized in human cells. Proteolytic processing of viral structural proteins was inhibited, however, and only immature virus particles were detected by electron microscopy. We constructed an insertion plasmid with the Escherichia coli lacZ gene under the control of the vaccinia virus late promoter P11, flanked by sequences of MVA DNA, to allow homologous recombination at the site of a naturally occurring 3500-base-pair deletion within the MVA genome. MVA recombinants were isolated and propagated in permissive avian cells and shown to express the enzyme beta-galactosidase upon infection of nonpermissive human cells. The amount of enzyme made was similar to that produced by a recombinant of vaccinia virus strain Western Reserve, which also had the lacZ gene under control of the P11 promoter, but multiplied to high titers. Since recombinant gene expression is unimpaired in nonpermissive human cells, MVA may serve as a highly efficient and exceptionally safe vector.

1 Follower
 · 
66 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Naturally occurring oncolytic viruses are live, replication-proficient viruses that specifically infect human cancer cells while sparing normal cell counterparts. Since the eradication of smallpox in the 1970s with the aid of vaccinia viruses, the vaccinia viruses and other genera of poxviruses have shown various degrees of safety and efficacy in pre-clinical or clinical application for human anti-cancer therapeutics. Furthermore, we have recently discovered that cellular tumor suppressor genes are important in determining poxviral oncolytic tropism. Since carcinogenesis is a multi-step process involving accumulation of both oncogene and tumor suppressor gene abnormalities, it is interesting that poxvirus can exploit abnormal cellular tumor suppressor signaling for its oncolytic specificity and efficacy. Many tumor suppressor genes such as p53, ATM, and RB are known to play important roles in genomic fidelity/maintenance. Thus, tumor suppressor gene abnormality could affect host genomic integrity and likely disrupt intact antiviral networks due to accumulation of genetic defects, which would in turn result in oncolytic virus susceptibility. This review outlines the characteristics of oncolytic poxvirus strains, including vaccinia, myxoma, and squirrelpox virus, recent progress in elucidating the molecular connection between oncogene/tumor suppressor gene abnormalities and poxviral oncolytic tropism, and the associated preclinical/clinical implications. I would also like to propose future directions in the utility of poxviruses for oncolytic virotherapy.
    The Journal of Microbiology 04/2015; 53(4):209-18. DOI:10.1007/s12275-015-5041-4 · 1.53 Impact Factor
  • Viruses 04/2015; 7(4):1726-1803. DOI:10.3390/v7041726 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chikungunya virus (CHIKV) infection is characterized by rash, acute high fever, chills, headache, nausea, photophobia, vomiting, and severe polyarthralgia. There is evidence that arthralgia can persist for years and result in long-term discomfort. Neurologic disease with fatal outcome has been documented, although at low incidences. The CHIKV RNA genome encodes five structural proteins (C, E1, E2, E3 and 6K). The E1 spike protein drives the fusion process within the cytoplasm, while the E2 protein is believed to interact with cellular receptors and therefore most probably constitutes the target of neutralizing antibodies. We have constructed recombinant Modified Vaccinia Ankara (MVA) expressing E3E2, 6KE1, or the entire CHIKV envelope polyprotein cassette E3E26KE1. MVA is an appropriate platform because of its demonstrated clinical safety and its suitability for expression of various heterologous proteins. After completing the immunization scheme, animals were challenged with CHIV-S27. Immunization of AG129 mice with MVAs expressing E2 or E3E26KE1 elicited neutralizing antibodies in all animals and provided 100% protection against lethal disease. In contrast, 75% of the animals immunized with 6KE1 were protected against lethal infection. In conclusion, MVA expressing the glycoprotein E2 of CHIKV represents as an immunogenic and effective candidate vaccine against CHIKV infections.
    PLoS Neglected Tropical Diseases 09/2014; 8(9):e3101. DOI:10.1371/journal.pntd.0003101 · 4.49 Impact Factor

Preview

Download
0 Downloads
Available from