Article

Expression of platelet-derived endothelial cell growth factor in Escherichia coli and confirmation of its thymidine phosphorylase activity.

University of Oxford, Oxford, England, United Kingdom
Biochemistry (Impact Factor: 3.19). 12/1992; 31(48):12141-6. DOI: 10.1021/bi00163a024
Source: PubMed

ABSTRACT Platelet-derived endothelial cell growth factor (PD-ECGF) has been expressed in Escherichia coli as a fusion protein with glutathione S-transferase (GST). The fusion protein was purified by one-step affinity chromatography on glutathione-agarose beads, and recombinant PD-ECGF was proteolytically cleaved with thrombin from its GST leader peptide to yield pure protein. Recombinant PD-ECGF stimulated [3H]methylthymidine uptake by endothelial cells in vitro; however, we were unable to detect stimulation of cell proliferation under a wide variety of conditions. We confirm that in accord with the recent report that PD-ECGF and human thymidine phosphorylase are products of the same gene [Furukawa, T., Yoshimura, A., Sumizawa, T., Haraguchi, M., & Akiyama, S. I. (1992) Nature 356, 668] recombinant PD-ECGF has thymidine phosphorylase activity comparable to that of E. coli thymidine phosphorylase. Further, E. coli thymidine phosphorylase was able to mimic the activity of recombinant PD-ECGF in the [3H]methylthymidine uptake assay, and it appears that recombinant PD-ECGF's effect on the uptake of thymidine by endothelial cells may be due to modulation of cellular thymidine pools. The mechanism by which PD-ECGF stimulates angiogenesis remains to be elucidated.

0 Followers
 · 
39 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Moonlighting proteins perform two or more cellular functions, which are selected based on various contexts including the cell type they are expressed, their oligomerization status, and the binding of different ligands at different sites. To understand overall landscape of their functional diversity, it is important to establish methods that can identify moonlighting proteins in a systematic fashion. Here, we have developed a computational framework to find moonlighting proteins on a genome scale and identified multiple proteomic characteristics of these proteins.ResultsFirst, we analyzed Gene Ontology (GO) annotations of known moonlighting proteins. We found that the GO annotations of moonlighting proteins can be clustered into multiple groups reflecting their diverse functions. Then, by considering the observed GO term separations, we identified 33 novel moonlighting proteins in Escherichia coli and confirmed them by literature review. Next, we analyzed moonlighting proteins in terms of protein-protein interaction, gene expression, phylogenetic profile, and genetic interaction networks. We found that moonlighting proteins physically interact with a higher number of distinct functional classes of proteins than non-moonlighting ones and also found that most of the physically interacting partners of moonlighting proteins share the latter¿s primary functions. Interestingly, we also found that moonlighting proteins tend to interact with other moonlighting proteins. In terms of gene expression and phylogenetically related proteins, a weak trend was observed that moonlighting proteins interact with more functionally diverse proteins. Structural characteristics of moonlighting proteins, i.e. intrinsic disordered regions and ligand binding sites were also investigated.Conclusion Additional functions of moonlighting proteins are difficult to identify by experiments and these proteins also pose a significant challenge for computational function annotation. Our method enables identification of novel moonlighting proteins from current functional annotations in public databases. Moreover, we showed that potential moonlighting proteins without sufficient functional annotations can be identified by analyzing available omics-scale data. Our findings open up new possibilities for investigating the multi-functional nature of proteins at the systems level and for exploring the complex functional interplay of proteins in a cell.ReviewersThis article was reviewed by Michael Galperin, Eugine Koonin, and Nick Grishin.
    Biology Direct 12/2014; 9(1):30. DOI:10.1186/PREACCEPT-2051526116138415 · 4.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rationale: Platelets contain abundant thymidine phosphorylase (TYMP), which is highly expressed in diseases with high risk of thrombosis, such as atherosclerosis and type II diabetes. Objective: Test the hypothesis that TYMP participates in platelet signaling and promotes thrombosis. Methods and Results: By using a ferric chloride (FeCl3) induced carotid artery injury thrombosis model, we found time to blood flow cessation was significantly prolonged in Tymp(-/-) and Tymp(+/-) mice compared to wild type (WT) mice. Bone marrow transplantation and platelet transfusion studies demonstrated that platelet TYMP was responsible for the antithrombotic phenomenon in the TYMP deficient mice. Collagen-, collagen-related peptide (CRP)-, adenosine diphosphate- and/or thrombin-induced platelet aggregation were significantly attenuated in Tymp(+/-) and Tymp(-/-) platelets, and in WT or human platelets pretreated with TYMP inhibitor KIN59. Tymp deficiency also significantly decreased agonist-induced P-selectin expression. TYMP contains an N-terminal SH3 domain binding proline-rich motif and forms a complex with the tyrosine kinases Lyn, Fyn and Yes in platelets. TYMP-associated Lyn was inactive in resting platelets, and TYMP trapped and diminished active Lyn after collagen stimulation. Tymp/Lyn double haploinsufficiency diminished the antithrombotic phenotype of Tymp(+/-) mice. TYMP deletion or inhibition of TYMP with KIN59 dramatically increased PECAM-1 tyrosine phosphorylation and diminished CRP or collagen induced AKT phosphorylation. In vivo administration of KIN59 significantly inhibited FeCl3 induced carotid artery thrombosis without affecting hemostasis. Conclusions: TYMP participates in multiple platelet signaling pathways and regulates platelet activation and thrombosis. Targeting TYMP might be a novel anti-platelet and anti-thrombosis therapy.
    Circulation Research 10/2014; DOI:10.1161/CIRCRESAHA.115.304591 · 11.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A series of conformationally constrained uridine-based nucleoside phosphonic acids containing annealed 1,3-dioxolane and 1,4-dioxane rings and their "open-structure" isosteres were synthesized and evaluated as potential multisubstrate-like inhibitors of the human recombinant thymidine phosphorylase (TP, EC 2.4.2.4) and TP obtained from peripheral blood mononuclear cells (PBMC). From a large set of tested nucleoside phosphonic acids, several potent compounds were identified that exhibited Ki values in the range of 0.048-1 μM. The inhibition potency of the studied compounds strongly depended on the degree of conformational flexibility of the phosphonate moiety, the stereochemical arrangement of the sugar-phosphonate component, and the substituent at position 5 of the pyrimidine nucleobase.
    European Journal of Medicinal Chemistry 01/2014; 74C:145-168. DOI:10.1016/j.ejmech.2013.12.026 · 3.43 Impact Factor