Superficial simplicity of the 2010 El Mayor-Cucapah earthquake of Baja California in Mexico

Nature Geoscience (Impact Factor: 11.67). 01/2011; 4:615-618. DOI: 10.1038/ngeo1213

ABSTRACT The geometry of faults is usually thought to be more complicated at the surface than at depth and to control the initiation, propagation and arrest of seismic ruptures(1-6). The fault system that runs from southern California into Mexico is a simple strike-slip boundary: the west side of California and Mexico moves northwards with respect to the east. However, the M(w) 7.2 2010 El Mayor-Cucapah earthquake on this fault system produced a pattern of seismic waves that indicates a far more complex source than slip on a planar strike-slip fault(7). Here we use geodetic, remote-sensing and seismological data to reconstruct the fault geometry and history of slip during this earthquake. We find that the earthquake produced a straight 120-km-long fault trace that cut through the Cucapah mountain range and across the Colorado River delta. However, at depth, the fault is made up of two different segments connected by a small extensional fault. Both segments strike N130 degrees E, but dip in opposite directions. The earthquake was initiated on the connecting extensional fault and 15 s later ruptured the two main segments with dominantly strike-slip motion. We show that complexities in the fault geometry at depth explain well the complex pattern of radiated seismic waves. We conclude that the location and detailed characteristics of the earthquake could not have been anticipated on the basis of observations of surface geology alone.

1 Bookmark
  • Source
    Geological Society of America Bulletin 01/2013; 500:371-396. · 4.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We measure the displacement field resulting from the 1975-1984 Krafla rifting crisis, NE Iceland, using optical image correlation. Images are processed using the COSI-Corr software package. Surface extension is accommodated on normal faults and fissures which bound the rift zone, in response to dike injection at depth. Correlation of declassified KH-9 spy and SPOT5 satellite images reveals extension between 1977-2002 (2.5 m average opening over 80 km), while correlation of aerial photos between 1957-1990 provide measurements of the total extension (average 4.3 m opening over 80 km). Our results show ˜8 m of opening immediately north of Krafla caldera, decreasing to 3-4 m at the northern end of the rift. Correlation of aerial photos from 1957-1976 reveal a bi-modal pattern of opening along the rift during the early crisis, which may indicate either two different magma sources located at either end of the rift zone (a similar pattern of opening was observed in the 2005 Afar rift crisis in East Africa), or variations in rock strength along the rift. Our results provide new information on how past dike injection events accommodate long-term plate spreading, as well as providing more details on the Krafla rift crisis. This study also highlights the potential of optical image correlation using inexpensive declassified spy satellite and aerial photos to measure deformation of the Earth's surface going back many decades, thus providing a new tool for measuring Earth surface dynamics, e.g. glaciers, landsliding, coastal erosion, volcano monitoring and earthquake studies, when InSAR and GPS data are not available.
    Journal of Geophysical Research Atmospheres 01/2012; · 3.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: On April 20, 2013 at 8:02 am, a magnitude 7.0 earthquake occurred in Lushan County, Sichuan Province, China, which induces massive landslides, causes great losses to life and property. Based on the locations of aftershocks provided by the China Earthquake Network Center and the characteristic of Longmenshan active faults system, combined with the current preliminary focal mechanism solution, the fault rupture direction is determined. With the finite fault inversion method, we invert the rupture process of the Lushan M s7.0 earthquake by teleseismic waveforms data. The inversion results indicate that the main shock is dominated by thrust fault component and the rupture initiated at depth of 15 km, and most of slip ruptured around the hypocenter with the peak slip of about 1.5 m. Most of rupture slips released at the first 20 s and the main rupture occurred at the first 10 s after the onsets of the mainshock. Most of seismic energy released near the hypocenter with a length of 28 km, especially on both sides of the hypocenter with the range of 20 km, and the seismic energy released relatively smaller in other areas. There is a large area with weak slip between the main rupture and another two asperities on both sides of the hypocenter; it may imply that the accumulated strain on the rupture fault has not been completely released. Therefore, there is a significant possibility of having strong aftershocks in the areas where energy is not fully released. This is also the main reason why there are a lot of moderate to strong aftershocks in the Lushan aftershock sequence. In addition, there is an earthquake vacant zone with a length of about 50 km between the Wenchuan M w7.9 earthquake and this event, which is of high earthquake risk and is deserved to be paid close attention to.
    Science China Earth Science 56(7). · 1.26 Impact Factor


Available from
May 27, 2014