Superficial simplicity of the 2010 El Mayor-Cucapah earthquake of Baja California in Mexico

Nature Geoscience (Impact Factor: 11.67). 07/2011; 4:615-618. DOI: 10.1038/ngeo1213

ABSTRACT The geometry of faults is usually thought to be more complicated at the surface than at depth and to control the initiation, propagation and arrest of seismic ruptures(1-6). The fault system that runs from southern California into Mexico is a simple strike-slip boundary: the west side of California and Mexico moves northwards with respect to the east. However, the M(w) 7.2 2010 El Mayor-Cucapah earthquake on this fault system produced a pattern of seismic waves that indicates a far more complex source than slip on a planar strike-slip fault(7). Here we use geodetic, remote-sensing and seismological data to reconstruct the fault geometry and history of slip during this earthquake. We find that the earthquake produced a straight 120-km-long fault trace that cut through the Cucapah mountain range and across the Colorado River delta. However, at depth, the fault is made up of two different segments connected by a small extensional fault. Both segments strike N130 degrees E, but dip in opposite directions. The earthquake was initiated on the connecting extensional fault and 15 s later ruptured the two main segments with dominantly strike-slip motion. We show that complexities in the fault geometry at depth explain well the complex pattern of radiated seismic waves. We conclude that the location and detailed characteristics of the earthquake could not have been anticipated on the basis of observations of surface geology alone.


Available from: Eric J Fielding, Apr 18, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Strainmeters can record offsets coincident with earthquakes, but how much these represent strain changes from elastic rebound, and how much they are contaminated by local effects, remains an open question. To study this, we use a probabilistic detection method to estimate coseismic offsets on nine borehole strainmeters (BSMs) operated by the Plate Boundary Observatory (PBO) in southern California, from 34 earthquakes with a wide range of magnitudes and distances. In general, the offsets estimated for the BSM data differ substantially from the static strain predicted by elastic dislocation theory, which is well supported by other techniques, though 10% of the observed offsets agree well with theory. For one earthquake, the BSM offsets significantly disagree with collo- cated long-base laser strainmeter data. Comparisons with collocated seismic data provide strong evidence that the absolute errors between the observed and predicted strains scale with the level of seismic energy density but also that relative errors (normalized by the model size) do not. We conclude that apparent strain offsets are induced by seismic waves, occurring presumably because of irreversible deformation, whether in the rock or cementing materials close to the BSMs, or in the instruments themselves. Coseismic offsets seen in PBO BSM data should therefore be viewed with caution before being used as a measure of large-scale coseismic deformation.
    Bulletin of the Seismological Society of America 02/2015; 105(1):431-444. DOI:10.1785/0120140199 · 1.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The intertidal portion of Mexico's Colorado River Delta is a dynamic environment subject to complex interactions of tectonic, fluvial, and tidal forces at the head of the Gulf of California. We review the historical interactions of these forces, use sequential satellite images, overflights, ground observations, and interferometric synthetic aperture radar (InSAR) data to study the effects of the 2010 Mw 7.2 El Mayor-Cucapah Earthquake on changing patterns of tidal inundation within the Delta, and assess effects of these changes to the fluvial/hydrological regime of the Colorado River estuary and nearby Ciénega de Santa Clara wetland. The objectives of this study are to highlight for environmental scientists, land managers, and ecological engineers the contribution of tectonic forces in shaping the intertidal Delta environment and to provide information on the effects of the 2010 earthquake which will be of practical value in planning and designing management measures and restoration projects for the estuary and Ciénega.The Colorado River estuary is at present blocked by a tidal sand bar which restricts access by marine species to the upper estuary and obstructs the flow of fresh water into the lower estuary. Located 13 km east of the estuary, the Ciénega is a 6000 ha wetland supported by agricultural drain water from Arizona and Mexico. South of the Ciénega is the Santa Clara Slough, an unvegetated 26,000 ha basin subject to periodic inundation from the northern Gulf's high amplitude tides, which have historically reached the margins of the Ciénega several times each year.The El Mayor-Cucapah earthquake ruptured the previously unknown Indiviso Fault which extends into the intertidal zone just west of the Ciénega. The Ciénega experienced only minor surface deformation having no direct effects to the wetland. Most of the significant ground movement and surface deformation occurred west of the Indiviso Fault adjacent to the estuary, where portions of the intertidal flats underwent extensive liquefaction, northward coseismic displacement and post-seismic subsidence. These surface deformations changed the pattern of tidal inundation, triggering development of a new system of natural tidal channels and creating conditions favorable for installation of projects to restore connectivity between the upper and lower estuary. The changed pattern of tidal inundation may also have contributed to an observed reduction in the occurrence of tidal flooding along the southwestern margin of the Ciénega following the earthquake.
    Ecological Engineering 10/2013; 59:144-156. DOI:10.1016/j.ecoleng.2012.09.004 · 3.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding earthquake (EQ) recurrence relies on information about the timing and size of past EQ ruptures along a given fault. Knowledge of a fault's rupture history provides valuable information on its potential future behavior, enabling seismic hazard estimates and loss mitigation. Stratigraphic and geomorphic evidence of faulting is used to constrain the recurrence of surface rupturing EQs. Analysis of the latter data sets culminated during the mid-1980s in the formulation of now classical EQ recurrence models, now routinely used to assess seismic hazard. Within the last decade, Light Detection and Ranging (lidar) surveying technology and other high-resolution data sets became increasingly available to tectono-geomorphic studies, promising to contribute to better-informed models of EQ recurrence and slip-accumulation patterns.
    Tectonophysics 01/2015; 638. DOI:10.1016/j.tecto.2014.11.004 · 2.87 Impact Factor