Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire

Future Chips Constellation, Rensselaer Polytechnic Institute, Troy, New York 12180, USA and Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
Applied Physics Letters (Impact Factor: 3.52). 04/2011; 98. DOI: 10.1063/1.3579255
Source: IEEE Xplore

ABSTRACT Green GaInN/GaN quantum well light-emitting diode (LED) wafers were grown on nanopatterned c-plane sapphire substrate by metal-organic vapor phase epitaxy. Without roughening the chip surface, such LEDs show triple the light output over structures on planar sapphire. By quantitative analysis the enhancement was attributed to both, enhanced generation efficiency and extraction. The spectral interference and emission patterns reveal a 58% enhanced light extraction while photoluminescence reveals a doubling of the internal quantum efficiency. The latter was attributed to a 44% lower threading dislocation density as observed in transmission electron microscopy. The partial light output power measured from the sapphire side of the unencapsulated nanopatterned substrate LED die reaches 5.2 mW at 525 nm at 100 mA compared to 1.8 mW in the reference LED. (C) 2011 American Institute of Physics. [doi:10.1063/1.3579255]

Download full-text


Available from: Christian Wetzel, Jul 01, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An auto-split laser lift-off (LLO) method for fabrication of vertical-injection GaN-based green light-emitting diodes (ASV-LEDs) is demonstrated. The ASV-LEDs exhibited a significant improvement in the light output and thermal dissipation, as compared with that of conventional LEDs on sapphire. The intrinsic physical mechanism of the auto-split LLO technique is studied by a Frank-Read dislocation clustering model. The laser energy density and mesa spacing are shown to be key factors in the auto-split LLO method. It is believed that this method offers an alternative way to fabricate high-performance GaN-based thin-film LEDs.
    IEEE Photonics Journal 08/2013; 5(4):8400407-8400407. DOI:10.1109/JPHOT.2013.2274768 · 2.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High-performance GaN-based green and yellow light-emitting diodes (LEDs) are grown on SiO2 nanorod patterned GaN/Si templates by metalorganic chemical vapor deposition. The high-density SiO2 nanorods are prepared by nonlithographic HCl-treated indium tin oxide and dry etching. The dislocation density of GaN is significantly reduced by nanoscale epitaxial lateral overgrowth. In addition to the much improved green LED (505 and 530 nm) results, the fabricated yellow (565 nm) InGaN/GaN-based multiquantum well (MQW) LEDs on Si substrates are demonstrated for the first time. High-quality GaN buffer and localized states in MQWs are correlated to obtaining high-efficiency long-wavelength emission in our devices.
    IEEE Electron Device Letters 07/2013; 34(7):903-905. DOI:10.1109/LED.2013.2260126 · 3.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Step graded-refractive index (SGRI) (ZnO)x(SiO2)1-x micropillar multilayers have been introduced and demonstrated on GaN-based LEDs combined with the mesh ITO. The SGRI (ZnO)x(SiO2)1-x micropillars were produced by controlling the Zn/Zn+Si ratio of co-sputtered ZnO and SiO2. The introduced three-layered SGRI (ZnO)x(SiO2)1-x micropillars improved both critical angle inside GaN LEDs and Fresnel transmittance coefficient (ηFr) as well as had better light coupling into the micropillars. Moreover, a high number of layers of the SGRI micropillars would aid the light coupled in the pillars to escape from the side wall of the pillar. LEDs with three-layered SGRI (ZnO)x(SiO2)1-x micropillars exhibited output power enhancements of 12.2% with a 20 mA Vf of 3.19 V. The output power of the mesh ITO LEDs with SGRI (ZnO)x(SiO2)1-x micropillars was further enhanced to 15.3% by improving the current spreading.
    Journal of Display Technology 05/2013; 9(5). DOI:10.1109/JDT.2012.2210537 · 1.69 Impact Factor