Article

Study on UV-LED/TiO2 process for degradation of Rhodamine B dye

Discipline of Inorganic Materials and Catalysis, Central Salt and Marine Chemicals Research Institute (CSMCRI), Council of Scientific and Industrial Research (CSIR), G.B. Marg, Bhavnagar-364 021, Gujarat, India
Chemical Engineering Journal (Impact Factor: 4.06). 05/2011; 169:126-134. DOI: 10.1016/j.cej.2011.02.066

ABSTRACT UV-light emitting diodes (UV-LEDs) was used for the photocatalytic degradation of Rhodamine B (RhB) dye to study the various parameters, effectiveness and feasibility for designing of photocatalytic reactor based on UV-LED irradiation in different conditions. The photocatalytic experiments were conducted using 5 UV-LED lights with same specification and Degussa P-25 TiO2 as a photocatalyst. The effects of operational parameters such as catalysts loading, initial dye concentration, pH, addition ofH2O2 and effect of metal ions (Zn2+, Ag+, Fe3+, Cu2+ and Cd2+) were studied for the photocatalytic degradation of RhB. A detailed degradation pathway has been suggested, which was based on the electrospray ionization mass spectrometry (ESI-MS) analysis. It was observed that the degradation of RhB occurred via N-de-ethylation process. N-de-ethylated product was further oxidized into acids and alcohols. The complete mineralization of RhB dye (2.08×10−5 M) was confirmed by chemical oxygen demand (COD), total organic carbon (TOC), total inorganic carbon (TIC) and high pressure liquid chromatography (HPLC) analysis. The optimum conditions for higher percentage degradation of RhB dye obtained with amount of catalyst (1.6 g/L), dye concentration (6.26×10−5 M) and pH= 3.05. Results demonstrated that the UV-LED/TiO2 process can
effectively degrade RhB dye with optimum conditions.

2 Bookmarks
 · 
676 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Through the precoating of TiO2 on carbon fiber sheet and the subsequent hydrothermal reaction of the coated species with NaOH and tetrabutyl titanate, we successfully demonstrated the engineering growth of TiO2 nanofibers on carbon fiber sheet. The resulting cloth exhibits excellent flexibility and enables robust, large-area (300 cm2) fabrication, representing a significant advantage over previous brittle, small area nanofibrous macroscopic structures. The adsorption and photodecomposition of Rhodamine B in water showed that the resulting cloth is very convenient for the purification of contaminated water owing to its combined adsorption and cleaning function. This work provides new insight into the construction of a large area, flexible and robust water purification membrane material.
    RSC Advances 01/2014; 4(49):25556. · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Photocatalytic degradation of phenol by titanium dioxide illuminated by one light emitting diode (LED) in a batch photocatalytic reactor is reported in this paper. The effect of catalyst loading, catalyst type, phenol–hydrogen peroxide ratio, pH, initial phenol concentration and irradiance by applying pulse width modulation (PWM) was studied. The effect of the beam width on photocatalytic degradation of phenol is also included in this paper as is the use of different type of reflectors outside the reactor. With both an LED beam width of 120° and optimal chemical conditions of 10 ppm phenol concentration with a hydrogen peroxide–phenol molar ratio of 100 and pH of 4.8, a degradation rate of 42% was achieved after 4 h. Decreasing the beam width to 40° raised degradation to 87%. In order to study the irradiance distribution and its effect on the reactor performance, experiments were conducted incorporating various catalysts loading, reactor heights and beam widths. The irradiance was measured for different amount of catalyst loading ranging from 0.17 to 1.8 g L−1at different reactor heights. The results are compared with optimal catalyst loading measurement to assess the correlation between phenol degradation and irradiance distribution. The UV LED in combination with titanium dioxide is appropriate for water treatment to degrade organic pollutants at low concentration.
    Chemical Engineering and Processing 09/2013; · 1.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metal-ion (Ag, Co, Ni, and Pd) doped TiO2 nanocatalysts were successfully embedded on carbon-covered alumina supports. The CCA-embedded catalysts were crystalline and had a high surface area compared to the free metal-ion doped titania nanocatalysts while they still retained the anatase phase of the core TiO2. These catalysts were photocatalytically active under solar light irradiation. Rhodamine B was used as a model pollutant and the reactivity followed a pseudo-first-order reaction kinetics. The reaction rate of the CCA-supported catalysts was Pd > Ag > Co > Ni. Among the ratios of the CCA:catalyst used, it was found that the 1:1 ratio had the fastest reaction rate, followed by the 1:2 ratio, while the 2:1 ratio exhibited the lowest reaction rate. The CCA/metal-ion doped titania were found to have photocatalytic activities comparable with those of CCA-supported titania.
    Industrial & Engineering Chemistry Research 01/2013; 52(5):1783–1794. · 2.24 Impact Factor

Full-text

Download
290 Downloads
Available from
May 20, 2014