The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis.

Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut 06510.
Journal of Spinal Disorders (Impact Factor: 1.21). 01/1993; 5(4):390-6; discussion 397. DOI: 10.1097/00002517-199212000-00002
Source: PubMed

ABSTRACT The neutral zone is a region of intervertebral motion around the neutral posture where little resistance is offered by the passive spinal column. Several studies--in vitro cadaveric, in vivo animal, and mathematical simulations--have shown that the neutral zone is a parameter that correlates well with other parameters indicative of instability of the spinal system. It has been found to increase with injury, and possibly with degeneration, to decrease with muscle force increase across the spanned level, and also to decrease with instrumented spinal fixation. In most of these studies, the change in the neutral zone was found to be more sensitive than the change in the corresponding range of motion. The neutral zone appears to be a clinically important measure of spinal stability function. It may increase with injury to the spinal column or with weakness of the muscles, which in turn may result in spinal instability or a low-back problem. It may decrease, and may be brought within the physiological limits, by osteophyte formation, surgical fixation/fusion, and muscle strengthening. The spinal stabilizing system adjusts so that the neutral zone remains within certain physiological thresholds to avoid clinical instability.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In vitro biomechanical investigations have become a routinely employed technique to explore new lumbar instrumentation. One of the most important advantages of such investigations is the low risk present when compared to clinical trials. However, the best use of any experimental data can be made when standard testing protocols are adopted by investigators, thus allowing comparisons among studies. Experimental variables, such as the length of the specimen, operative level, type of loading (e.g., dynamic versus quasistatic), magnitude, and rate of load applied, are among the most common variables controlled during spinal biomechanical testing. Although important efforts have been made to standardize these protocols, high variability can be found in the current literature. The aim of this investigation was to conduct a systematic review of the literature to identify the current trends in the protocols reported for the evaluation of new lumbar spinal implants under laboratory setting.
    02/2015; 2015:1-15. DOI:10.1155/2015/506181
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several clinical tests have been proposed on low back pain (LBP), but their usefulness in detecting lumbar instability is not yet clear. The objective of this literature review was to investigate the clinical validity of the main clinical tests used for the diagnosis of lumbar instability in individuals with LBP and to verify their applicability in everyday clinical practice. We searched studies of the accuracy and/or reliability of Prone Instability Test (PIT), Passive Lumbar Extension Test (PLE), Aberrant Movements Pattern (AMP), Posterior Shear Test (PST), Active Straight Leg Raise Test (ASLR) and Prone and Supine Bridge Tests (PB and SB) in Medline, Embase, Cinahl, PubMed, and Scopus databases. Only the studies in which each test was investigated by at least one study concerning both the accuracy and the reliability were considered eligible. The quality of the studies was evaluated by QUADAS and QAREL scales. Six papers considering 333 LBP patients were included. The PLE was the most accurate and informative clinical test, with high sensitivity (0.84, 95% CI: 0.69 - 0.91) and high specificity (0.90, 95% CI: 0.85 -0.97). The diagnostic accuracy of AMP depends on each singular test. The PIT and the PST demonstrated by fair to moderate sensitivity and specificity [PIT sensitivity = 0.71 (95% CI: 0.51 - 0.83), PIT specificity = 0.57 (95% CI: 039 - 0.78); PST sensitivity = 0.50 (95% CI: 0.41 - 0.76), PST specificity = 0.48 (95% CI: 0.22 - 0.58)]. The PLE showed a good reliability (k = 0.76), but this result comes from a single study. The inter-rater reliability of the PIT ranged by slight (k = 0.10 and 0.04), to good (k = 0.87). The inter-rater reliability of the AMP ranged by slight (k = -0.07) to moderate (k = 0.64), whereas the inter-rater reliability of the PST was fair (k = 0.27). The data from the studies provided information on the methods used and suggest that PLE is the most appropriate tests to detect lumbar instability in specific LBP. However, due to the lack of available papers on other lumbar conditions, these findings should be confirmed with studies on non-specific LBP patients.
    04/2015; 23. DOI:10.1186/s12998-015-0058-7
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: INTRODUCTION: The sacroiliac joint (SIJ) is frequently involved in low back and pelvic girdle pain. However, morphometrical and functional characteristics related to SIJ pain are poorly defined. Pelvic belts represent one treatment option, but evidence still lacks as to their pain-reducing effects and the mechanisms involved. Addressing these two issues, this case-controlled study compares morphometric, functional and clinical data in SIJ patients and healthy controls and evaluates the effects of short-term pelvic belt application. METHODS: Morphometric and functional data pertaining to pelvic belt effects were compared in 17 SIJ patients and 17 controls. Lumbar spine and pelvis morphometries were obtained from 3T magnetic resonance imaging. Functional electromyography data of pelvis and leg muscles and center of pressure excursions were measured in one-leg stance. The numerical rating scale was used to evaluate immediate pain-reducing effects. RESULTS: Pelvic morphometry was largely unaltered in SIJ patients and also by pelvic belt application. The angle of lumbar lateral flexion was significantly larger in SIJ patients without belt application. Muscle activity and center of pressure were unaffected by SIJ pain or by belt application in one-leg stance. Nine of 17 patients reported decreased pain intensities under moderate belt application, four reported no change and four reported increased pain intensity. For the entire population investigated here, this qualitative description was not confirmed on a statistical significant level. DISCUSSION: Minute changes were observed in the alignment of the lumbar spine in the frontal plane in SIJ patients. The potential pain-decreasing effects of pelvic belts could not be attributed to altered muscle activity, pelvic morphometry or body balance in a static short-term application. Long-term belt effects will therefore be of prospective interest.
    PLoS ONE 03/2015; 10(3):e0116739. DOI:10.1371/journal.pone.0116739 · 3.53 Impact Factor