On the Sol-gel Synthesis and Characterization of Titanium Oxide Nanoparticles

ABSTRACT TiO2 nanoparticles have been prepared by sol-gel process using titanium isopropoxide as a
precursor with ethanol and water as solvents. The synthesis involves gel formation, digestion for
24h, drying at 100oC for 10h, and calcination in air at 500-800oC for 2h. The resulting powder
has been studied with respect to phase(s), morphology, optical absorption and photo -
luminescence (PL) behaviour. The calcination of dried sol-gel product at 500oC for 2h leads to
formation of anatase phase that possesses a tetragonal structure (a = 3.785 Å, c = 9.514 Å, Z =
4), average crystallite size ~ 11 nm and band gap of 3.34 eV. Further, increasing the time (t) of
calcination causes crystallite growth that follows the relation d = α – β exp (-t/τ), α = 18.1 nm, β
= 9.6 nm and τ = 6.9h. However, calcination of sol-gel product at 800oC for 2h gives rise to a
rutile phase (tetragonal a = 4.593Å, c = 2.959Å, Z = 2), average crystallite size ~ 25 nm and band
gap of 3.02 eV. The anatase phase exhibits strong PL emission peaks (excitation wavelength 405
nm) at 2.06 and 1.99 eV due to defect levels within the energy band gap. This observation has
been attributed to finite size effects occurring in nanoparticles.

Download full-text


Available from: Varun Chaudhary, Jan 14, 2015
626 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, anatase titanium dioxide nanoparticles were successfully prepared by a sol–gel method using two different precursors, titanium isopropoxide and titanium butoxide. Hydrochloric acid or nitric acid was added to adjust the pH of the solution. The sols obtained were dried at 80 °C and calcined at 450 °C for 3 h. The nanostructures were characterised by scanning electron microscopy, FTIR and ultraviolet–visible spectroscopy. The phase transformations were investigated by an X-ray diffractometer. Highly crystalline anatase titania nanoparticles could be obtained through the controlled hydrolysis reaction rate. The sizes of synthesized particles were in the range 5–13 nm, i.e. 9 nm on an average and with a regular shape. The size of nanoparticles was not affected by the choice of precursor. The broad view of the samples prepared using titanium isopropoxide showed film-like structures, whereas the samples prepared using titanium butoxide showed spherical granules. A red shift of 0.13 eV was observed in the band gap in the case of non-spherical particles compared to spherical ones.
    09/2014; 4(3). DOI:10.1007/s40089-014-0111-x
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introducing defects into the intrinsic TiO2 structural framework with nitrogen enhanced the photocatalytic response towards the degradation of atrazine, as compared to undoped TiO2. Both catalysts, which were prepared in an analogous manner, demonstrated high crystallinity and anatase phase dominant with well defined {101} facets, which serves as a pioneer platform for good photocatalytic activity. The introduction of nitrogen increased the stability of the crystal structure which leads to the formation of pure active anatase phase. Although the optical response was shifted towards the visible region, initiated by the formation of new absorption defects and interstate energy levels, the chemical state of nitrogen in the doped TiO2 controls the overall catalyst photoreactivity. In this study, it was found that the surface area and degree of band gap reduction played a lesser role for photocatalysis enhancement, although they partly contributed, than the concentration of surface charge traps and the type of structural framework formed during nitrogen incorporation. The enhancement in the photocatalytic degradation of atrazine clearly was influenced by the loading and nature of the nitrogen dopant, which in turn, governed the types of chemical and optical properties of the final catalyst product.
    RSC Advances 05/2015; 5(55). DOI:10.1039/C5RA00890E · 3.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The utilization of triblock copolymer, pluronic F127 as a structure directing agent for the preparation of TiO 2 played an important role in enhancing the photocatalytic degradation rate of atrazine by a factor of 1.7. The mesoporous F127-TiO 2 showed significant modification of morphology, particle and crystallite size, and presence of defect energy belt within the catalyst forbidden band as proven via photolumine-scence spectra and x-ray photon spectroscopy. Hence the photogenerated carriers have longer lifespan to migrate to the catalyst surface for redox activities. Furtherance, surface reactive {0 0 1} facets proven by the formation of new geometrical single crystal of square and rhombus surfaces in F127-TiO 2 facilitates atrazine degradation as well. The increased surface area of F127-TiO 2 promotes greater atrazine absorption, thus governs improved interaction between absorbed atrazine molecules and surface generated active radicals as a prerequisite for good photocatalytic activity. Interestingly, using the same synthesis procedure, it was observed that the addition of pluronic F127 significantly affects anatase crystal structure as opposed to the more thermodynamically stable rutile, generating 61% and 25% of total crystallite size modification for anatase and rutile, respectively. However, there were no changes on the final composition of anatase and rutile crystal structure. In overall, enhancement of the photocatalytic degradation of atrazine is ruled out to the following factors (1) modification of geometrical structures and size, (2) narrowing of band gap due to defect energy belt, (3) longer lifespan of photoexcited charges to the catalyst surface, (4) enhanced surface textural properties and (5) increased exposure of reactive {0 0 1} facets, which were all observed in F127-TiO 2 .
    Applied Surface Science 11/2015; 355:959-968. DOI:10.1016/j.apsusc.2015.07.178 · 2.71 Impact Factor