Electrical conductivity of basaltic and carbonatite melt-bearing peridotites at high pressures: Implications for melt distribution and melt fraction in the upper mantle.

Earth and Planetary Science Letters (Impact Factor: 4.72). 07/2010; 295(3-4):593-602. DOI: 10.1016/j.epsl.2010.04.050

ABSTRACT Electrical impedance measurements were performed on two types of partial molten samples with basaltic and carbonatitic melts in a Kawai-type multi-anvil apparatus in order to investigate melt fraction–conductivity relationships and melt distribution of the partial molten mantle peridotite under high pressure. The silicate samples were composed of San Carlos olivine with various amounts of mid-ocean ridge basalt (MORB), and the carbonate samples were a mixture of San Carlos olivine with various amounts of carbonatite. High-pressure experiments on the silicate and carbonate systems were performed up to 1600 K at 1.5 GPa and up to at least 1650 K at 3 GPa, respectively. The sample conductivity increased with increasing melt fraction. Carbonatite-bearing samples show approximately one order of magnitude higher conductivity than basalt-bearing ones at the similar melt fraction. A linear relationship between log conductivity (σbulk) and log melt fraction (ϕ) can be expressed well by the Archie's law (Archie, 1942) (σbulk/σmelt=Cϕn) with parameters C=0.68 and 0.97, n=0.87 and 1.13 for silicate and carbonate systems, respectively. Comparison of the electrical conductivity data with theoretical predictions for melt distribution indicates that the model assuming that the grain boundary is completely wetted by melt is the most preferable melt geometry. The gradual change of conductivity with melt fraction suggests no permeability jump due to melt percolation at a certain melt fraction. The melt fraction of the partial molten region in the upper mantle can be estimated to be 1–3% and ∼0.3% for basaltic melt and carbonatite melt, respectively.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Knowledge about hydrogen diffusivity in mantle minerals is critical for determining mantle hydrogen distribution, and additionally for understanding point defects. Chemical diffusion of hydrogen in olivine depends on self diffusion and concentration of hydrogen and other point defects, such as small polarons and metal vacancies. In this study we measured hydrogen self diffusion in olivine, and we compare these values to those previously reported for chemical 1-H redox exchange DExch. Deuterium 2-H was interdiffused into hydrogen 1-H saturated single crystals of San Carlos olivine between 750-900 °C at 2 GPa. We measured and fit the resulting 2-H and 1-H profiles to obtain the interdiffusion coefficient DH,[100] = 10^(-5.04+/-1.43)*e(-137+/-31kJ/mol)/(RT) m^2/s. This is ~1 log unit lower than DExch,[100], with similar activation energy Ea,[100]. DH is anisotropic with DH,[001] = 10^(-12.0+/-0.2) m^2/s at 900 °C and 2 GPa; only upper bound estimates for DH,[010] could be determined from our experiments. We use DH,[100] and DExch,[100] to calculate the small polaron diffusion coefficient associated with redox exchange Dh,[100] = 10^-3.90*e(-142kJ/mol)/(RT) m^2/s. Dh,[100] is combined with reported values for DExch,[010] and DExch,[010] to calculate values for DH,[010] and DH,[001] that are consistent with our upper bound estimates. These DH values, both measured and derived, are used with the Nernst-Einstein relation to calculate the electrical conductivity σ by hydrogen in olivine σH. We calculate σH = 10^1.63*e(-126kJ/mol)/(RT) S/m, which is similar in magnitude to the lower range of reported σ measurements. This similarly suggests that hydrogen alone cannot account for high σ anomalies observed at asthenospheric depths (~10^-2 to ~10^-1 S/m). The Ea for hydrogen mobility/diffusion we calculate are higher (~40% for 100 ppmw H2O) than those derived from previous σ measurements. This work supported by NSF EAR 0739050 to J. A. Tyburczy and R. Hervig. The SIMS data were obtained at the ASU National SIMS Facility, supported by NSF EAR 0622775 to R. Hervig & P.Williams. Piston cylinder experiments were conducted in the ASU OmniPressure lab. Prepared by LLNL under Contract DE-AC52-158 07NA27344.
    Geochemistry Geophysics Geosystems 12/2011; · 2.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Seafloor magnetotelluric soundings provide models of electrical conductivity distributions in the Earth’s oceanic mantle. By inverting the sounding results, a high-conductivity (typically 0.01 – 0.1 S/m) layer is often obtained in the oceanic upper mantle, which is referred to as the electrical asthenosphere. The obtained high conductivity is then interpreted in terms of the amount of additional conduction that accounts for the conductivity value based on a physical model of the asthenosphere. There are two major candidates that are considered as the cause of the asthenosphere: the effect of water and partial melting. In this paper, we consider the partial melting hypothesis. We propose a method to estimate the electrical conductivity of the melt phase that is responsible for high conductivity by assuming the melt fraction distribution in the asthenosphere. We applied this method to one-dimensional conductivity profiles recently obtained from three regions of different seafloor age, and the results indicate that the proposed approach, combined with other approaches such as seismology and mineral physics, will provide useful information in testing a partial melting hypothesis for the cause of the asthenosphere.
    Physics of The Earth and Planetary Interiors 01/2013; · 2.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The low-viscosity layer in the upper mantle, the asthenosphere, is a requirement for plate tectonics. The seismic low velocities and the high electrical conductivities of the asthenosphere are attributed either to subsolidus, water-related defects in olivine minerals or to a few volume per cent of partial melt, but these two interpretations have two shortcomings. First, the amount of water stored in olivine is not expected to be higher than 50 parts per million owing to partitioning with other mantle phases (including pargasite amphibole at moderate temperatures) and partial melting at high temperatures. Second, elevated melt volume fractions are impeded by the temperatures prevailing in the asthenosphere, which are too low, and by the melt mobility, which is high and can lead to gravitational segregation. Here we determine the electrical conductivity of carbon-dioxide-rich and water-rich melts, typically produced at the onset of mantle melting. Electrical conductivity increases modestly with moderate amounts of water and carbon dioxide, but it increases drastically once the carbon dioxide content exceeds six weight per cent in the melt. Incipient melts, long-expected to prevail in the asthenosphere, can therefore produce high electrical conductivities there. Taking into account variable degrees of depletion of the mantle in water and carbon dioxide, and their effect on the petrology of incipient melting, we calculated conductivity profiles across the asthenosphere for various tectonic plate ages. Several electrical discontinuities are predicted and match geophysical observations in a consistent petrological and geochemical framework. In moderately aged plates (more than five million years old), incipient melts probably trigger both the seismic low velocities and the high electrical conductivities in the upper part of the asthenosphere, whereas in young plates, where seamount volcanism occurs, a higher degree of melting is expected.
    Nature 04/2014; 509(7498):81-85. · 38.60 Impact Factor

Full-text (2 Sources)

Available from
May 16, 2014