Changes in phenolic profile and antioxidant activity during production of diced tomatoes

Food Chemistry (Impact Factor: 3.39). 06/2011; 126(4):1700. DOI: 10.1016/j.foodchem.2010.12.061


Tomatoes and tomato-based products are rich in antioxidants such as carotenoids, vitamin C and polyphenols. The industrial processing of diced tomatoes involves heat treatments in which these antioxidant compounds may be potentially affected. In this study, we evaluate the effect of each separate step in the dice-making process. Three technological processes were investigated: Hot. Cold and Cold treated with calcium salt (CaCl2). Four stages were monitored in each process: (1) fresh tomatoes: (2) peeled tomatoes: (3) diced tomatoes; and (4) final product after sauce addition. The main tool for minimising or counteracting the eventual processing damage was the strategy of 'reconstitution', achieved by adding a sauce rich in seeds and peels with high levels of antioxidants and phenolics to the diced tomatoes. Different analyses were carried out in order to evaluate the effect of each processing step. First, total polyphenols (TP) were evaluated using Folin-Ciocalteau (F-C) assay and antioxidant activity using ABTS(+) and DPPH assays. Flavonols, flavanones, hydroxycinnamic and phenolic acids were then quantified using liquid chromatography/electrospray ionisation tandem mass spectrometry (HPLC-ESI-MS/MS). The combination of principal component analysis (PCA) and analysis of variance (ANOVA) revealed that each processing step induces alterations in the antioxidant and phenolic profile, and in particular sauce addition and calcium treatment significantly affected the levels of antioxidants and phenolics during the dice-making process.

Download full-text


Available from: Cristina Andres-Lacueva,
  • Source
    • "foods containing phenolic compounds (flavonoids/hydroxycinnamic acids and esters) with high antioxidant activity and human health (Lila 2007; Ververidis et al. 2007; Han and Baik 2008; Cuevas-Rodriguez et al. 2010). The growing recognition of the importance of plant antioxidants in human health has thus led to increased research interest in the synthesis and accumulation of these antioxidant compounds in plants (Tamagnone et al. 1998; Hoffmann et al. 2004; Niggeweg et al. 2004; Abdulrazzak et al. 2006; Luo et al. 2008; Vallverdu-Queralt et al. 2011). Both academic and applied interest in this area is further stimulated by the fact that some widely consumed plants are relatively rich in flavonoid/phenolic compounds and by the observation that people who consume higher quantities of these foods appear to have lower risks for certain health problems, such as cardiovascular disease and cancer (Sawa et al. 1999; Bazzano et al. 2002; Clifford 2004; Cos et al. 2005; Go et al. 2005). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Phenylalanine ammonia lyase (PAL) is the first entry enzyme of the phenylpropanoid pathway producing phenolics, widespread constituents of plant foods and beverages, including chlorogenic acids, polyphenols found at remarkably high levels in the coffee bean and long recognized as powerful antioxidants. To date, whereas PAL is generally encoded by a small gene family, only one gene has been characterized in Coffea canephora (CcPAL1), an economically important species of cultivated coffee. In this study, a molecular- and bioinformatic-based search for CcPAL1 paralogues resulted successfully in identifying two additional genes, CcPAL2 and CcPAL3, presenting similar genomic structures and encoding proteins with close sequences. Genetic mapping helped position each gene in three different coffee linkage groups, CcPAL2 in particular, located in a coffee genome linkage group (F) which is syntenic to a region of Tomato Chromosome 9 containing a PAL gene. These results, combined with a phylogenetic study, strongly suggest that CcPAL2 may be the ancestral gene of C. canephora. A quantitative gene expression analysis was also conducted in coffee tissues, showing that all genes are transcriptionally active, but they present distinct expression levels and patterns. We discovered that CcPAL2 transcripts appeared predominantly in flower, fruit pericarp and vegetative/lignifying tissues like roots and branches, whereas CcPAL1 and CcPAL3 were highly expressed in immature fruit. This is the first comprehensive study dedicated to PAL gene family characterization in coffee, allowing us to advance functional studies which are indispensable to learning to decipher what role this family plays in channeling the metabolism of coffee phenylpropanoids. Electronic supplementary material The online version of this article (doi:10.1007/s00425-012-1613-2) contains supplementary material, which is available to authorized users.
    Planta 02/2012; 236(1):313-26. DOI:10.1007/s00425-012-1613-2 · 3.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Supervisor's supporting comments Alex Medina joined my research group, Natural Antioxidants, in January 2006 to start his PhD program. He has been working intensively and efficiently on several projects; initially for his thesis he developed a new bioanalytical methodology to quantify phenols in urine (Medina-Remón A et al. 2009) to correlate with the hypertension prevention in the PREDIMED study ( ). Thanks to this new bioanalytical method, we are currently starting collaboration projects with different research centers. In addition, he has been working on other research projects on tomatoes, grapes, citric fruits and wine. Medina is helpful whenever needed and efficient. He has shown himself to be responsible, well-prepared, intelligent, organized and to have very good teaching skills. Moreover, he is patient and able to solve problems calmly, but at the same time, he is enthusiastic about what he does and can transmit this enthusiasm to his colleagues. He is really a thoughtful scientist. I have now contracted him as a Postdoctoral researcher. His responsibilities include leading several master's students and he is writing several papers on the health effects of polyphenols using his method.
    Bioanalysis 07/2011; 3(14):1563-5. DOI:10.4155/bio.11.143 · 3.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effect of storage on the total polyphenol content and individual phenolic compounds as well as on the hydrophilic antioxidant capacity of ketchups and tomato juices was studied. The total polyphenol content was determined using the Folin-Ciocalteu assay, and the antioxidant capacity of the hydrophilic fraction was determined using DPPH and ABTS(+) assays. Individual polyphenols were identified and quantified using liquid chromatography/electrospray ionization tandem mass spectrometry on a triple quadrupole. All analyses were carried out for ketchups and tomato juices after storage for 3, 6, and 9 months. The total polyphenol content and antioxidant capacity of the hydrophilic fraction decreased during storage of ketchups and tomato juices. Ketchups, in general, showed a slightly greater stability during storage than tomato juices. The most significant decrease was observed for quercetin followed by caffeic and ferulic acids, whereas glycosilated polyphenols showed greater stability during storage.
    Journal of Agricultural and Food Chemistry 08/2011; 59(17):9358-65. DOI:10.1021/jf202140j · 2.91 Impact Factor
Show more