Satellite Technologies have no alternative. On the problem of the natural and technogenic disasters monitoring

In book: FIAG Proceedings, issue 89, Publisher: Fiodorov Institute of Applied Geopysics, pp.173-185
1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The paper examines the effect of air ionization on the thermal balance of the boundary layer of atmosphere. In seismically active areas the increased radon emanation from active faults and cracks before earthquakes is the primary source of air ionization. The problem is analyzed both on microscopic and macroscopic levels and in both cases the significant changes of the air relative humidity and air temperature are obtained. This happens due to the water molecules attachment to the newly formed ions (or in other words, condensation) which leads to the excretion of the latent heat. Obtained results permit us to explain the changes of the surface temperature and the surface latent heat flux increase before earthquakes observed by remote sensing satellites, as well as ground based measurements of the air temperature and relative humidity variations before the Colima earthquake (M7.6) of 2003 in Mexico, Hector Mine earthquake (M7.1) of 1999 in USA and Parkfield earthquake (M6) of 2004 in USA. These findings are also supported by the results of active experiments where the installation of artificial ionization of atmosphere is used.
    Physics and Chemistry of the Earth, Parts A/B/C.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we examine pre-earthquake ionospheric anomalies by the total electron content (TEC) derived from a ground-based receiver of the Global Positioning System (GPS). A 15-day running median of the TEC and the associated inter-quartile range (IQR) are utilized as a reference for identifying abnormal signals during all of the 20M≥6.0 earthquakes in the Taiwan area from September 1999 to December 2002. Results show that the pre-earthquake ionospheric anomalies appear during 18:00–22:00LT (LT=UT+8h) within 5 days prior to 16 of the 20M≥6.0 earthquakes. This success rate of 80% (=16/20%) suggests that the GPS TEC is useful to register pre-earthquake ionospheric anomalies appearing before large earthquakes. Key words. Ionosphere (ionospheric disturbances; ionosphere-atmosphere interactions)
    Annales Geophysicae. 01/2004;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Lithosphere-Atmosphere-Ionosphere (LAI) coupling model created recently permitted to explain some unknown phenomena observed around the time of strong earthquakes. One of them is formation of special shape clouds, usually presented as the thin linear structures. It was discovered that these clouds are associated with the active tectonic faults or with the tectonic plate borders. They repeat the fault shape but usually are turned in relation to the fault position. Their formation is explained by the anomalous vertical electric field generated in the vicinity of active tectonic structure due to air ionization produced by the radon increased emanation. The new formed ions through the hydration process do not recombine and growth with time due to increased water molecules attachment to the ion. Simultaneously they move up driven by the anomalous electric field and drift in the crossed ExB fields. At the higher altitudes the large ion clusters become the centers of condensation and the cloud formation. Examples for the recent major earthquakes (Sumatra 2004, Kashmir 2005, Java 2006) are presented. The size and the angle of the cloud rotation in relation to the fault position permit to estimate the magnitude of the impending earthquake.
    AGU Fall Meeting Abstracts. 11/2006; -1:0426.


Available from
Jun 2, 2014