• Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Nazaré canyon on the Portuguese Margin (NE Atlantic) was sampled during spring-summer for three consecutive years (2005–2007), permitting the first inter-annual study of the meiofaunal communities at the Iberian Margin at two abyssal depths (~3500 m and ~4400 m). Using new and already published data, the meiofauna standing stocks (abundance and biomass) and nematode structural and functional diversity were investigated in relation to the sediment biogeochemistry (e.g. organic carbon, nitrogen, chlorophyll a, phaeopigments) and grain size. A conspicuous increase in sand content from 2005 to 2006 and decrease of phytodetritus at both sites, suggested the occurrence of one or more physical disturbance events. Nematode standing stocks and trophic diversity decreased after these events, seemingly followed by a recovery/recolonization period in 2007, which was strongly correlated with an increase in the quantity and bioavailability of phytodetrital organic matter supplied. Changes in meiofauna assemblages, however, also differed between stations, likely because of the contrasting hydrodynamic and food supply conditions. Higher meiofauna and nematode abundances, biomass and trophic complexity were found at the shallowest canyon station, where the quantity, quality and bioavailability of food material were higher than at the deeper site. The present results suggest that even though inter-annual variations in the sedimentary environment can regulate the meiofauna in the abyssal Nazaré Canyon, heterogeneity between sampling locations in the canyon were more pronounced. Meiofauna data are available in resources of this article - please cite article and doi when using data
    Deep Sea Research Part I Oceanographic Research Papers 01/2014; 2014(83):102. · 2.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite recent advances in the knowledge of submarine canyons ecosystems, our understanding of the faunal patterns and processes in these environments is still marginal. In this study, meiobenthic nematode communities (from 300 m to 1600 m depth) obtained in November 2003 and May 2004 at eight stations inside and outside Blanes submarine canyon were analysed for nematode standing stocks (SSs), feeding types and gender-life stage distributions. Environmental data were obtained by sediment traps and current meters, attached to moorings (April 2003–May 2004), and sediments samples analysed for biogeochemistry and grain size (May 2004). In November 2003, nematode SSs decreased with increasing depth (367.2 individuals and 7.31 μg C per 10 cm2 at 388 m water depth to 7.7 individuals and 0.18 μg C per 10 cm2 at 1677 m water depth), showing a significant negative relation (abundance: R2 = 0.620, p = 0.020; biomass: R2 = 0.512, p = 0.046). This was not the case in May 2004 (283.5 individuals and 3.53 μg C per 10 cm2 at 388 m water depth to 490.8 individuals and 4.93 μg C per 10 cm2 at 1677 m water depth; abundance: R2 = 0.003, p = 0.902; biomass: R2 = 0.052, p = 0.587), suggesting a temporal effect that overrides the traditional decrease of SSs with increasing water depth. Both water depth and sampling time played a significant role in explaining nematode SSs, but with differences between stations. No overall differences were observed between canyon and open slope stations. Nematode standing stock (SS) patterns can be explained by taking into account the interplay of phytodetrital input and disturbance events, with station differences such as topography playing an important role. Individual nematode size decreased from November 2003 to May 2004 and was explained by a food-induced genera shift and/or a food-induced transition from a ‘latent’ to a ‘reproductive’ nematode community. Our results suggest that size patterns in nematode communities are not solely governed by trophic conditions over longer periods of time in relatively food-rich environments such as canyons. We hypothesize that food pulses in a dynamic and topographical heterogeneous environment such as canyons regulate nematode size distributions, rather than long-term food availability. Feeding type distributions in the Blanes Canyon did not clearly resemble those from other canyon systems, apart from the spring assemblage at one station in the head of the canyon.
    Progress In Oceanography 01/2013; 118:159–174. · 3.71 Impact Factor
  • Edited by Progress in Oceanography 118: 1-288, 11/2013; Elsevier.