Effect of different flocculants on the flocculation performance of microalgae, Chaetoceros calcitrans, cells

African Journal of Biotechnology 01/2009; 8:5971-5978.

ABSTRACT The possibility of using flocculation technique for the separation of microalgae, Chaetoceros calcitrans, biomass from the culture broth was investigated. The flocculation experiments were conducted in 500 mL beaker using culture broth obtained from 10 L photobioreactor. The harvesting efficiency of 90 and 60% was obtained in flocculation without flocculants conducted for 10 days at 27°C (in light and dark) and 4°C (dark), respectively. Harvesting efficiency higher than 90% with short settling time was achieved by adjusting the culture pH to 10.2 using either sodium hydroxide (NaOH) or potassium hydroxide (KOH). Improved cell viability (> 80%) and settling time with a slight improvement of flocculation efficiency was achieved by the addition of polyelectrolytes flocculant (Magnafloc® LT 27 and LT 25). However, the flocculants were only functioned when the pH of the microalgae culture was pre-adjusted to a certain value that promotes cells entrapment and surface charge neutralization prior to flocculation process. The flocculation efficiency and cell viability obtained in flocculation with Magnafloc® (LT 25 and LT 27) was comparable to that obtained in flocculation with chitosan. When chitosan and Magnafloc® (LT 25 and LT 27) were used as flocculants, the highest flocculation efficiency of C. calcitrans cells was observed at pH 8 and 10.2, respectively. Substantial increased in sedimentation rate was observed with increasing flocculants dosage though the flocculation efficiency and cell viability were not significantly varied. © 2009 Academic Journals. Cited By (since 1996): 2, Export Date: 14 June 2011, Source: Scopus


Available from: Mohd Shamzi Mohamed, Jun 12, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Excess greenhouse gas emissions and the concomitant effect on global warming have become significant environmental, social and economic threats. In this context, the development of renewable, carbon-neutral and economically feasible biofuels is a driving force for innovation worldwide. A lot of effort has been put into developing biodiesel from microalgae. However, there are still a number of technological, market and policy barriers that are serious obstacles to the economic feasibility and competitiveness of such biofuels. Conversely, there are also a number of business opportunities if the production of such alternative biofuel becomes part of a larger integrated system following the Biorefinery strategy. In this case, other biofuels and chemical products of high added value are produced, contributing to an overall enhancement of the economic viability of the whole integrated system. Additionally, dual purpose microalgae-bacteria-based systems for treating wastewater and production of biofuels and chemical products significantly contribute to a substantial saving in the overall cost of microalgae biomass production. These types of systems could help to improve the competitiveness of biodiesel production from microalgae, according to some recent Life Cycle Analysis studies. Furthermore, they do not compete for fresh water resources for agricultural purposes and add value to treating the wastewater itself. This work reviews the most recent and relevant information about these types of dual purpose systems. Several aspects related to the treatment of municipal and animal wastewater with simultaneous recovery of microalgae with potential for biodiesel production are discussed. The use of pre-treated waste or anaerobic effluents from digested waste as nutrient additives for weak wastewater is reviewed. Isolation and screening of microalgae/cyanobacteria or their consortia from various wastewater streams, and studies related to population dynamics in mixed cultures, are highlighted as very relevant fields of research. The species selection may depend on various factors, such as the biomass and lipid productivity of each strain, the characteristics of the wastewater, the original habitat of the strain and the climatic conditions in the treatment plant, among others. Some alternative technologies aimed at harvesting biomass at a low cost, such as cell immobilization, biofilm formation, flocculation and bio-flocculation, are also reviewed. Finally, a Biorefinery design is presented that integrates the treatment of municipal wastewater with the recovery of oleaginous microalgae, together with the use of seawater supplemented with anaerobically digested piggery waste for cultivating Arthrospira (Spirulina) and producing biogas, biodiesel, hydrogen and other high added value products. Such strategies offer new opportunities for the cost-effective and competitive production of biofuels along with valuable non-fuel products.
    Biotechnology advances 05/2012; 30(5):1031-46. DOI:10.1016/j.biotechadv.2012.05.001 · 8.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effects of culture medium pH, flocculant type (FeCl(3), Al(2)(SO(4))(3), Alum, Ca(OH)(2), chitosan, polyacrylamide), dosage and sedimental time on flocculation efficiency of harvesting Scenedesmus sp. cultivated in an open-pond system were investigated. Meanwhile, the relation between initial biomass concentration and the flocculant dosage needed was also investigated. The results from this work indicated that the flocculation efficiency achieved 97.4% after 10min of sedimentation when the pH was adjusted to be 11.5, without adding flocculants. FeCl(3) and chitosan showed a good flocculation efficiency at dosage of 0.15 and 0.08g/L, respectively without pH adjustment. The flocculation efficiency increased from 49.74% to 90.63% when the final medium pH was adjusted to 6 after adding 0.1g/L Alum. An increment from 68.18% to 92.84% was observed after adding 0.1g/L Al(2)(SO(4))(3) followed by pH adjustment. Finally, the most suitable flocculation method was discussed in this paper.
    Bioresource Technology 01/2013; 133C:9-15. DOI:10.1016/j.biortech.2013.01.071 · 5.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The use flocculants on the recovery of freshwater microalgae is studied. Flocculants tested include metal salts, chitosan, and polyelectrolytes used in wastewater treatment processes. Influence of flocculant, but also the doses and biomass concentrations affecting biomass recovery as well as the concentration factor has been evaluated. Results showed that the use of metal salts or chitosan was not efficient, whereas polyelectrolytes allow the efficient recovery of biomass, at doses of 2-25 mg per gram of microalgae biomass. The required doses depend on the particular polyelectrolyte and the freshwater strain present; but cationic polyelectrolytes are generally recommended. The use of polyelectrolytes does not adversely affect water reuse in the production process. The concentration factors obtained are higher than 35 in most cases. Such high concentration factors allow a reduction in the equipment size necessary for biomass dewatering, thus improving the viability of using these microorganisms in biofuel or wastewater processes.
    Bioresource Technology 05/2012; 118:102-10. DOI:10.1016/j.biortech.2012.05.018 · 5.04 Impact Factor