Article

Time course EPI of human brain function during task activation.

Department of Radiology, Medical College of Wisconsin, Milwaukee 53226.
Magnetic Resonance in Medicine (Impact Factor: 3.4). 07/1992; 25(2):390-7.
Source: PubMed

ABSTRACT Using gradient-echo echo-planar MRI, a local signal increase of 4.3 +/- 0.3% is observed in the human brain during task activation, suggesting a local decrease in blood deoxyhemoglobin concentration and an increase in blood oxygenation. Images highlighting areas of signal enhancement temporally correlated to the task are created.

2 Followers
 · 
187 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ultimate goal of many fields of neuroscience research is to harness the ability for the human brain to reorganize, as an understanding of how to induce plasticity in cortex could foster the development of treatments of such devastating conditions as paralysis, neurodegenerative disease and stroke. The specifics of the timing and types of reorganization possible in cortical sensorimotor maps have generated tremendous interest, both in the adult and juvenile brain. While it is clear that cortical representations in human are able to undergo significant reorganization during development (an early critical period of life) (e.g., [1-4]), the extent of reorganization possible in the developing human brain is still not fully known. In addition, there are likely differences in the timing and degree of reorganization possible across the different sensory modalities [5-11]. This chapter will focus on examples of plasticity in the visual cortex of the developing human arising from congenital disorders, with specific attention to the use of functional magnetic resonance imaging (fMRI) in in vivo measurements of these cortical changes.
    Advanced Brain Neuroimaging Topics in Health and Disease - Methods and Applications, 1 edited by Papageorgiou, Christopoulos, Smirnakis, 05/2014: chapter 12: pages 297-326; InTech., ISBN: 978-953-51-1203-7
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Presurgical language mapping for patients with lesions close to language areas is critical to neurosurgical decision-making for preservation of language function. As a clinical noninvasive imaging technique, functional MRI (fMRI) is used to identify language areas by measuring blood-oxygen-level dependent (BOLD) signal change while patients perform carefully timed language vs. control tasks. This task-based fMRI critically depends on task performance, excluding many patients who have difficulty performing language tasks due to neurologic deficits. On the basis of recent discovery of resting-state fMRI (rs-fMRI), we propose a "task-free" paradigm acquiring fMRI data when patients simply are at rest. This paradigm is less demanding for patients to perform and easier for technologists to administer. We investigated the feasibility of this approach in right-handed healthy control subjects. First, group independent component analysis (ICA) was applied on the training group (14 subjects) to identify group level language components based on expert rating results. Then, four empirically and structurally defined language network templates were assessed for their ability to identify language components from individuals' ICA output of the testing group (18 subjects) based on spatial similarity analysis. Results suggest that it is feasible to extract language activations from rs-fMRI at the individual subject level, and two empirically defined templates (that focuses on frontal language areas and that incorporates both frontal and temporal language areas) demonstrated the best performance. We propose a semi-automated language component identification procedure and discuss the practical concerns and suggestions for this approach to be used in clinical fMRI language mapping. Hum Brain Mapp, 2012. © 2012 Wiley-Periodicals, Inc.
    Human Brain Mapping 03/2014; 35(3). DOI:10.1002/hbm.22231 · 6.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Test-retest reliability of individual functional magnetic resonance imaging (fMRI) results is of importance in clinical practice and longitudinal experiments. While several studies have investigated reliability of task-induced motor network activation, less is known about the reliability of the task-free motor network. Here, we investigate the reproducibility of task-free fMRI, and compare it to motor task activity. Sixteen healthy subjects participated in this study with a test-retest interval of seven weeks. The task-free motor network was assessed with a univariate, seed-voxel-based correlation analysis. Reproducibility was tested by means of intraclass correlation (ICC) values and ratio of overlap. Higher ICC values and a better overlap were found for task fMRI as compared to task-free fMRI. Furthermore, ratio of overlap improved for task fMRI at higher thresholds, while it decreased for task-free fMRI, suggesting a less focal spatial pattern of the motor network during resting state. However, for both techniques the most active voxels were located in the primary motor cortex. This indicates that, just like task fMRI, task-free fMRI can properly identify critical brain areas for motor task performance. Although both fMRI techniques are able to detect the motor network, resting-state fMRI is less reliable than task fMRI. Hum Brain Mapp, 2012. © 2012 Wiley Periodicals, Inc.
    Human Brain Mapping 01/2014; 35(1). DOI:10.1002/hbm.22180 · 6.92 Impact Factor