Article

Long-term frontal brain metabolic changes in cocaine abusers.

Brookhaven National Laboratory, Upton, New York 11973.
Synapse (Impact Factor: 2.43). 08/1992; 11(3):184-90. DOI: 10.1002/syn.890110303
Source: PubMed

ABSTRACT Neurological complications from cocaine use are well recognized. We propose that chronic cocaine use can also cause clinically silent brain dysfunction. We investigated brain glucose metabolism with positron emission tomography (PET) and 2-deoxy-2[18F] fluoro-D-glucose (FDG) in 21 neurologically intact chronic cocaine abusers (C) and 18 normal controls (N). The cocaine abusers were tested 1-6 weeks after the last use of cocaine and seven were retested after a 3 month drug-free period. Global cerebral glucose metabolism was not significantly different between controls and cocaine abusers (N = 38.4 +/- 3, C = 36.5 +/- 5 mumol/100 g of tissue, min). However, cocaine abusers had significantly (P less than 0.05) lower metabolic activity in 16 of the 21 left frontal regions and 8 of the 21 right frontal regions. These decreases persisted after 3-4 months of detoxification and were correlated with the dose (P less than or equal to 0.01) and the years of cocaine use (P less than or equal to 0.05). This study shows reduced rates of frontal metabolism in neurologically intact cocaine abusers that persist even after 3-4 months of detoxification.

1 Bookmark
 · 
123 Views
  • Biological Psychiatry 06/1999; 45(12). · 9.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cocaine addiction is a chronically relapsing disorder that is associated with harmful consequences. Relapses occur frequently and effective pharmacotherapies are currently sparse. Preclinical studies suggest that altered glutamatergic signaling is crucial for the maintenance of cocaine self-administration. However, the translational validity of these models is currently unknown. Therefore, we investigated potential differences of glutamate, glutamine and further metabolite levels in the pregenual anterior cingulate cortex (pgACC) and the right dorsolateral prefrontal cortex (rDLPFC) of chronic cocaine users and controls using the PRior knOwledge FITting 2.0 tool in combination with two-dimensional J-resolved single-voxel 1H-magnetic resonance spectroscopy at 3T and voxel tissue composition and relaxation correction. Glutamate and glutamine levels did not differ between cocaine users and controls, but higher weekly cocaine use and higher cocaine hair concentrations were associated with lower glutamine/creatine ratios in the pgACC. Interestingly, cocaine users exhibited higher glucose/total creatine ratios than controls in the pgACC and higher choline/creatine ratios in the pgACC and rDLPFC. These results imply that cocaine use is associated with altered cortical glucose metabolism and membrane turnover. Finally, cocaine use over the past 6 months appears to decrease cortical glutamine levels indicating changes in glutamate cycling.
    Addiction Biology 01/2015; · 5.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cocaine users exhibit a wide range of behavioral impairments accompanied by brain structural, neurochemical and functional abnormalities. Metabolic mapping studies in cocaine users and animal models have shown extensive functional alterations throughout the striatum, limbic system, and cortex. Few studies, however, have evaluated the persistence of these effects following cessation of cocaine availability. The purpose of this study, therefore, was to assess the functional effects of re-exposure to cocaine in nonhuman primates after the discontinuation of cocaine self-administration for 30 or 90 days, using the quantitative autoradiographic 2-[(14)C]deoxyglucose (2DG) method. Rhesus monkeys self-administered cocaine (fixed interval 3-min schedule, 30 infusions per session, 0.3 mg/kg/infusion) for 100 sessions followed by 30 (n=4) or 90 days (n=3) during which experimental sessions were not conducted. Food-reinforced control animals (n=5) underwent identical schedules of reinforcement. Animals were then re-exposed to cocaine or food for one final session and the 2DG method applied immediately after session completion. Compared to controls, re-exposure to cocaine after 30 or 90 day drug-free periods resulted in lower rates of glucose utilization in ventral and dorsal striatum, prefrontal and temporal cortex, limbic system, thalamus, and midbrain. These data demonstrate that vulnerability to the effects of cocaine persists for as long as 90 days after cessation of drug use. While there was some evidence for recovery (fewer brain areas were affected by cocaine re-exposure at 90 days as compared to 30 days), this was not uniform across regions, thus suggesting that recovery occurs at different rates in different brain systems.
    Neuropharmacology 06/2014; · 4.82 Impact Factor