Article

A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction.

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106.
Circulation Research (Impact Factor: 11.86). 07/1991; 68(6):1501-26. DOI: 10.1161/01.RES.68.6.1501
Source: PubMed

ABSTRACT A mathematical model of the membrane action potential of the mammalian ventricular cell is introduced. The model is based, whenever possible, on recent single-cell and single-channel data and incorporates the possibility of changing extracellular potassium concentration [K]o. The fast sodium current, INa, is characterized by fast upstroke velocity (Vmax = 400 V/sec) and slow recovery from inactivation. The time-independent potassium current, IK1, includes a negative-slope phase and displays significant crossover phenomenon as [K]o is varied. The time-dependent potassium current, IK, shows only a minimal degree of crossover. A novel potassium current that activates at plateau potentials is included in the model. The simulated action potential duplicates the experimentally observed effects of changes in [K]o on action potential duration and rest potential. Physiological simulations focus on the interaction between depolarization and repolarization (i.e., premature stimulation). Results demonstrate the importance of the slow recovery of INa in determining the response of the cell. Simulated responses to periodic stimulation include monotonic Wenckebach patterns and alternans at normal [K]o, whereas at low [K]o nonmonotonic Wenckebach periodicities, aperiodic patterns, and enhanced supernormal excitability that results in unstable responses ("chaotic activity") are observed. The results are consistent with recent experimental observations, and the model simulations relate these phenomena to the underlying ionic channel kinetics.

1 Bookmark
 · 
197 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT Recent progress in embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) research led to high-purity preparations of human cardiomyocytes (CMs) differentiated from these two sources-suitable for tissue regeneration, in vitro models of disease, and cardiac safety pharmacology screening. We performed a detailed characterization of the effects of nifedipine, cisapride, and tetrodotoxin (TTX) on Cor.4U(®) human iPSC-CM, using automated whole-cell patch-clamp recordings with the CytoPatch(™) 2 equipment, within a complex assay combining multiple voltage-clamp and current-clamp protocols in a well-defined sequence, and quantitative analysis of several action potential (AP) parameters. We retrieved three electrical phenotypes based on AP shape: ventricular, atrial/nodal, and S-type (with ventricular-like depolarization and lack of plateau). To suppress spontaneous firing, present in many cells, we injected continuously faint hyperpolarizing currents of -10 or -20 pA. We defined quality criteria (both seal and membrane resistance over 1 GΩ), and focused our study on cells with ventricular-like AP. Nifedipine induced marked decreases in AP duration (APD): APD90 (49.8% and 40.8% of control values at 1 and 10 μM, respectively), APD50 (16.1% and 12%); cisapride 0.1 μM increased APD90 to 176.2%; and tetrodotoxin 10 μM decreased maximum slope of phase to 33.3% of control, peak depolarization potential to 76.3% of control, and shortened APD90 on average to 80.4%. These results prove feasibility of automated voltage- and current-clamp recordings on human iPSC-CM and their potential use for in-depth drug evaluation and proarrhythmic liability assessment, as well as for diagnosis and pharmacology tests for cardiac channelopathy patients.
    Assay and Drug Development Technologies 10/2014; · 1.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rotors are postulated to maintain cardiac fibrillation. Despite the importance of bipolar electrograms in clinical electrophysiology, few data exist on the properties of bipolar electrograms at rotor sites. The pivot of a spiral wave is characterized by relative uncertainty of wavefront propagation direction compared to the periphery. The bipolar electrograms used in electrophysiology recording encode information on both direction and timing of approaching wavefronts.
    PLoS ONE 01/2014; 9(11):e110662. · 3.53 Impact Factor
  • Source
    Elisa Passini, Simonetta Genovesi, Stefano Severi
    [Show abstract] [Hide abstract]
    ABSTRACT: During haemodialysis (HD) sessions, patients undergo alterations in the extracellular environment, mostly concerning plasma electrolyte concentrations, pH, and volume, together with a modification of sympathovagal balance. All these changes affect cardiac electrophysiology, possibly leading to an increased arrhythmic risk. Computational modeling may help to investigate the impact of HD-related changes on atrial electrophysiology. However, many different human atrial action potential (AP) models are currently available, all validated only with the standard electrolyte concentrations used in experiments. Therefore, they may respond in different ways to the same environmental changes. After an overview on how the computational approach has been used in the past to investigate the effect of HD therapy on cardiac electrophysiology, the aim of this work has been to assess the current state of the art in human atrial AP models, with respect to the HD context. All the published human atrial AP models have been considered and tested for electrolytes, volume changes, and different acetylcholine concentrations. Most of them proved to be reliable for single modifications, but all of them showed some drawbacks. Therefore, there is room for a new human atrial AP model, hopefully able to physiologically reproduce all the HD-related effects. At the moment, work is still in progress in this specific field.
    Computational and Mathematical Methods in Medicine 12/2014; · 0.79 Impact Factor

Full-text

Download
2 Downloads
Available from