Right hemisphere dominance of different mismatch negativity

Department of Psychology, University of Helsinki, Finland.
Electroencephalography and Clinical Neurophysiology 07/1991; 78(6):466-79. DOI: 10.1016/0013-4694(91)90064-B
Source: PubMed


Auditory stimulus blocks were presented to 10 reading subjects. Each block consisted of 2 types of stimulus, standard (P = 90%) and deviant (P = 10%), delivered in a random order with short constant inter-stimulus intervals. The standard stimuli were 600 Hz. 80 dB SPL 50 msec sine wave bursts. In different blocks, the deviant stimuli differed from the standards either in frequency (650 Hz), intensity (70 dB) or duration (20 msec). Left- and right-ear stimulations were used in separate blocks. Event-related brain potentials (ERPs) were recorded with 16 electrodes over both hemispheres. All the different types of deviant stimuli elicited an ERP component called the mismatch negativity (MMN). The MMN was larger over the right hemisphere irrespective of the ear stimulated whereas the N1 component, elicited by both standards and deviants, was larger over the hemisphere contralateral to the ear stimulated. The results provide further evidence for the view that the MMN reflects a neural mismatch process with a memory trace which automatically codes the physical features of the repetitive stimuli.

1 Follower
11 Reads
  • Source
    • "In agreement with the source localisation (Fig. 6d), PGC analysis consistently disclosed two major bilateral signal propagations close to the primary auditory cortex in both the right and left temporal areas. The average of PGC values across subjects reveal greater activity in the bilateral temporal region, consistent with previous studies (Paavilainen et al. 1991; Kaiser et al. 2000; Stevens et al. 2005). The PGC measure also suggests specific directionality of cortical interactions, which in turn reveals evidence of the underlying neural mechanisms. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Partial Granger causality (PGC) has been applied to analyse causal functional neural connectivity after effectively mitigating confounding influences caused by endogenous latent variables and exogenous environmental inputs. However, it is not known how this connectivity obtained from PGC evolves over time. Furthermore, PGC has yet to be tested on realistic nonlinear neural circuit models and multi-trial event-related potentials (ERPs) data. In this work, we first applied a time-domain PGC technique to evaluate simulated neural circuit models, and demonstrated that the PGC measure is more accurate and robust in detecting connectivity patterns as compared to conditional Granger causality and partial directed coherence, especially when the circuit is intrinsically nonlinear. Moreover, the connectivity in PGC settles faster into a stable and correct configuration over time. After method verification, we applied PGC to reveal the causal connections of ERP trials of a mismatch negativity auditory oddball paradigm. The PGC analysis revealed a significant bilateral but asymmetrical localised activity in the temporal lobe close to the auditory cortex, and causal influences in the frontal, parietal and cingulate cortical areas, consistent with previous studies. Interestingly, the time to reach a stable connectivity configuration (~250-300 ms) coincides with the deviation of ensemble ERPs of oddball from standard tones. Finally, using a sliding time window, we showed higher resolution dynamics of causal connectivity within an ERP trial. In summary, time-domain PGC is promising in deciphering directed functional connectivity in nonlinear and ERP trials accurately, and at a sufficiently early stage. This data-driven approach can reduce computational time, and determine the key architecture for neural circuit modelling.
    Neuroinformatics 10/2015; DOI:10.1007/s12021-015-9281-6 · 2.83 Impact Factor
  • Source
    • "[Doeller et al., 2003; Inui et al., 2006; Opitz et al., 1999; Sch€ onwiesner et al., 2007; Yvert et al., 2001]. Consistent with sensor-level data and previous findings, MMNm was larger on the right hemisphere [Paavilainen et al., 1991; Recasens et al., 2014]. Similarly, left-and right-ward lateralization of deviance-related effects in the Nbm and Pbm components, respectively, was in agreement with sensorlevel data. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Our auditory system is able to encode acoustic regularity of growing levels of complexity to model and predict incoming events. Recent evidence suggests that early indices of deviance detection in the time range of the middle-latency responses (MLR) precede the mismatch negativity (MMN), a well-established error response associated with deviance detection. While studies suggest that only the MMN, but not early deviance-related MLR, underlie complex regularity levels, it is not clear whether these two mechanisms interplay during scene analysis by encoding nested levels of acoustic regularity, and whether neuronal sources underlying local and global deviations are hierarchically organized. We registered magnetoencephalographic evoked fields to rapidly presented four-tone local sequences containing a frequency change. Temporally integrated local events, in turn, defined global regularities, which were infrequently violated by a tone repetition. A global magnetic mismatch negativity (MMNm) was obtained at 140-220 ms when breaking the global regularity, but no deviance-related effects were shown in early latencies. Conversely, Nbm (45-55 ms) and Pbm (60-75 ms) deflections of the MLR, and an earlier MMNm response at 120-160 ms, responded to local violations. Distinct neuronal generators in the auditory cortex underlay the processing of local and global regularity violations, suggesting that nested levels of complexity of auditory object representations are represented in separated cortical areas. Our results suggest that the different processing stages and anatomical areas involved in the encoding of auditory representations, and the subsequent detection of its violations, are hierarchically organized in the human auditory cortex. Hum Brain Mapp, 2014. © 2014 Wiley Periodicals, Inc.
    Human Brain Mapping 11/2014; 35(11). DOI:10.1002/hbm.22582 · 5.97 Impact Factor
  • Source
    • "It is worth noting that the contour tones (such as rising, falling and falling-rising tones in Mandarin), which can be recognized in the absence of speaker and speech context information even when carried by nonspeech stimuli (e.g., Xu et al., 2006a), may activate the long-term memory traces in the LH, as indicated by Mandarin contour tone studies which found that the across-category contour tones carried by nonspeech stimuli elicited greater MMN amplitude than within-category contour tones at the LH recording site (Xi et al., 2010). The MMNs elicited by duration and intensity contrasts were RH lateralized (Experiment 2), which is consistent with previous studies performed on speakers of nontonal languages (Giard et al., 1995; Paavilainen et al., 1991). As mentioned earlier, there is an additional neural source in the RH related to attention switch (Opitz et al., 2002; Rinne et al., 2000) which must have contributed to the RH lateralization of the MMNs elicited by duration and intensity contrasts in the present study. "
    [Show abstract] [Hide abstract]
    ABSTRACT: For nontonal language speakers, speech processing is lateralized to the left hemisphere and musical processing is lateralized to the right hemisphere (i.e., function-dependent brain asymmetry). On the other hand, acoustic temporal processing is lateralized to the left hemisphere and spectral/pitch processing is lateralized to the right hemisphere (i.e., acoustic-dependent brain asymmetry). In this study, we examine whether the hemispheric lateralization of lexical pitch and acoustic pitch processing in tonal language speakers is consistent with the patterns of function- and acoustic-dependent brain asymmetry in nontonal language speakers. Pitch contrast in both speech stimuli (syllable /ji/ in Experiment 1) and nonspeech stimuli (harmonic tone in Experiment 1; pure tone in Experiment 2) were presented to native Cantonese speakers in passive oddball paradigms. We found that the mismatch negativity (MMN) elicited by lexical pitch contrast was lateralized to the left hemisphere, which is consistent with the pattern of function-dependent brain asymmetry (i.e., left hemisphere lateralization for speech processing) in nontonal language speakers. However, the MMN elicited by acoustic pitch contrast was also left hemisphere lateralized (harmonic tone in Experiment 1) or showed a tendency for left hemisphere lateralization (pure tone in Experiment 2), which is inconsistent with the pattern of acoustic-dependent brain asymmetry (i.e., right hemisphere lateralization for acoustic pitch processing) in nontonal language speakers. The consistent pattern of function-dependent brain asymmetry and the inconsistent pattern of acoustic-dependent brain asymmetry between tonal and nontonal language speakers can be explained by the hypothesis that the acoustic-dependent brain asymmetry is the consequence of a carryover effect from function-dependent brain asymmetry. Potential evolutionary implication of this hypothesis is discussed.
    NeuroImage 07/2013; 83. DOI:10.1016/j.neuroimage.2013.02.080 · 6.36 Impact Factor
Show more