An intact Box C sequence in the U3 snRNA is required for binding of fibrillarin, the protein common to the major family of nucleolar snRNPs.

Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT 06511.
The EMBO Journal (Impact Factor: 10.75). 10/1991; 10(9):2645-51.
Source: PubMed

ABSTRACT The mammalian U3 snRNP is one member of a recently described family of nucleolar snRNPs which also includes U8, U13, U14, X and Y. All of these snRNPs are immunoprecipitable by anti-fibrillarin autoantibodies, suggesting the existence of a common binding site for the 34 kDa fibrillarin (Fb) protein. Two short nucleotide sequences, called Boxes C and D, present in each of these RNAs are the most likely sites for fibrillarin binding. We have developed a HeLa in vitro assembly system for binding of fibrillarin to human U3 snRNA. Reconstitution of the input RNA is specific in our assay since four of the other nucleolar small RNAs (U8, U13, X and Y) which have Boxes C and D become immunoprecipitable by anti-fibrillarin whereas two RNAs which lack these sequences (5S and 5.8S) do not. Deletion analyses of the U3 snRNA demonstrate that the presence of Box C but not Box D is required for fibrillarin binding. Moreover, seven single or double site-specific mutations in the U3 Box C abolish binding. The role of the Box C-fibrillarin interaction in the biogenesis of the Fb snRNPs is discussed.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cajal bodies (CBs) are subnuclear organelles that contain components of a number of distinct pathways in RNA transcription and RNA processing. CBs have been linked to other subnuclear organelles such as nucleoli, but the reason for the presence of nucleolar proteins such as fibrillarin in CBs remains uncertain. Here, we use full-length fibrillarin and truncated fibrillarin mutants fused to green fluorescent protein (GFP) to demonstrate that specific structural domains of fibrillarin are required for correct intranuclear localization of fibrillarin to nucleoli and CBs. The second spacer domain and carboxy terminal alpha-helix domain in particular appear to target fibrillarin, respectively, to the nucleolar transcription centers and CBs. The presence of the RNP domain seems to be a prerequisite for correct targeting of fibrillarin. Time-lapse confocal microscopy of human cells that stably express fibrillarin-GFP shows that CBs fuse and split, albeit at low frequencies. Recovered fluorescence of fibrillarin-GFP in nucleoli and CBs after photobleaching indicates that it is highly mobile in both organelles (estimated diffusion constant ∼0.02 μm2 s−1), and has a significantly larger mobile fraction in CBs than in nucleoli.
    The Journal of Cell Biology 10/2000; 151(3):653-662. DOI:10.1083/jcb.151.3.653 · 9.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Small nucleolar RNAs (snoRNAs) are a large family of eukaryotic RNAs that function within the nucleolus in the biogenesis of ribosomes. One major class of snoRNAs is the box C/D snoRNAs named for their conserved box C and box D sequence elements. We have investigated the involvement of cis-acting sequences and intranuclear structures in the localization of box C/D snoRNAs to the nucleolus by assaying the intranuclear distribution of fluorescently labeled U3, U8, and U14 snoRNAs injected into Xenopus oocyte nuclei. Analysis of an extensive panel of U3 RNA variants showed that the box C/D motif, comprised of box C', box D, and the 3' terminal stem of U3, is necessary and sufficient for the nucleolar localization of U3 snoRNA. Disruption of the elements of the box C/D motif of U8 and U14 snoRNAs also prevented nucleolar localization, indicating that all box C/D snoRNAs use a common nucleolar-targeting mechanism. Finally, we found that wild-type box C/D snoRNAs transiently associate with coiled bodies before they localize to nucleoli and that variant RNAs that lack an intact box C/D motif are detained within coiled bodies. These results suggest that coiled bodies play a role in the biogenesis and/or intranuclear transport of box C/D snoRNAs.
    Molecular Biology of the Cell 08/1999; 10(7):2131-47. DOI:10.1091/mbc.10.7.2131 · 4.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sequences necessary for nucleolar targeting were identified in Box C/D small nucleolar RNAs (snoRNAs) by fluorescence microscopy. Nucleolar preparations were examined after injecting fluorescein-labelled wild-type and mutated U14 or U8 snoRNA into Xenopus oocyte nuclei. Regions in U14 snoRNA that are complementary to 18S rRNA and necessary for rRNA processing and methylation are not required for nucleolar localization. Truncated U14 molecules containing Boxes C and D with or without the terminal stem localized efficiently. Nucleolar localization was abolished upon mutating just one or two nucleotides within Boxes C and D. Moreover, the spatial position of Boxes C or D in the molecule is essential. Mutations in Box C/D of U8 snoRNA also impaired nucleolar localization, suggesting the general importance of Boxes C and D as nucleolar localization sequences for Box C/D snoRNAs. U14 snoRNA is shown to be required for 18S rRNA production in vertebrates.
    The EMBO Journal 07/1998; 17(11):3176-87. DOI:10.1093/emboj/17.11.3176 · 10.75 Impact Factor


Available from

Similar Publications