Cloning of Drosophila transcription factor Adf-1 reveals homology to Myb oncoproteins

Department of Molecular and Cell Biology, University of California, Berkeley 94720.
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 02/1992; 89(2):683-7. DOI: 10.1073/pnas.89.2.683
Source: PubMed


The Drosophila sequence-specific DNA binding protein, Adf-1, is capable of activating transcription of the alcohol dehydrogenase gene, Adh, and is implicated in the transcriptional control of other developmentally regulated genes. We have cloned the cDNA encoding Adf-1 by generating specific DNA probes deduced from partial amino acid sequence of the protein. Several cDNA clones encoding an extended open reading frame were isolated from a phage lambda library. The complete amino acid sequence of Adf-1 deduced from the longest cDNA reveals structural similarities to the putative helix-turn-helix DNA binding motif of Myb and Myb-related proteins. DNA sequence analysis of genomic clones and Northern blot analysis of mRNA suggest that Adf-1 is a single-copy gene encoding a 1.9-kb transcript. Purified recombinant Adf-1 expressed in Escherichia coli binds specifically to Adf-1 recognition sites and activates transcription of a synthetic Adh promoter in vitro in a manner indistinguishable from the protein purified from Drosophila. Temporally staged Drosophila embryos immunochemically stained with affinity-purified anti-Adf-1 antibodies indicate that Adf-1 protein is not detectable in very early embryos and does not appear to be maternally inherited. During later stages of embryogenesis, Adf-1 appears to be expressed in the nucleus of most somatic cells in the embryo with possibly higher concentrations found in some tissues.

Download full-text


Available from: Arie Admon,
  • Source
    • "Additionally, the MADF domain (IPR006578) has 42 copies in L. albipes but only nine in A. mellifera. This domain is associated with transcription factor Adf-1 in Drosophila, and is known to play a role in the regulation of alcohol dehydrogenase expression [30]. There are also several fatty acid-related domains over-represented in L. albipes (IPR015876, IPR005804 and IPR020842). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Taxa that harbor natural phenotypic variation are ideal for ecological genomic approaches aimed at understanding how the interplay between genetic and environmental factors can lead to the evolution of complex traits. Lasioglossum albipes is a polymorphic halictid bee that expresses variation in social behavior among populations, and common-garden experiments have suggested that this variation is likely to have a genetic component. We present the L. albipes genome assembly to characterize the genetic and ecological factors associated with the evolution of social behavior. The de novo assembly is comparable to other published social insect genomes, with an N50 scaffold length of 602kb. Gene families unique to L. albipes are associated with integrin-mediated signaling and DNA-binding domains, and several appear to be expanded in this species, including the glutathione-s-transferases and the inositol monophosphatases. L. albipes has an intact DNA methylation system, and in silico analyses suggest that methylation occurs primarily in exons. Comparisons to other insect genomes indicate that genes associated with metabolism and nucleotide binding undergo accelerated evolution in the halictid lineage. Whole-genome resequencing data from one solitary and one social L. albipes female identify six genes that appear to be rapidly diverging between social forms, including a putative odorant receptor and a cuticular protein. L. albipes represents a novel genetic model system for understanding the evolution of social behavior. It represents the first published genome sequence of a primitively social insect, thereby facilitating comparative genomic studies across the Hymenoptera as a whole.
    Genome biology 12/2013; 14(12):R142. DOI:10.1186/gb-2013-14-12-r142 · 10.81 Impact Factor
  • Source
    • "CpG methylation site number 9 is within the binding site of transcription factor Adf-1, and CpG methylation site number 14 is within the binding site for transcription factor Sp1 (Figure 7). In Drosophila, Adf-1 activates the transcription of many genes [38-40]. In normal human dermal fibroblasts, Sp1 can activate the transcription of COL1A1 [41] During MD, methylation of the 9th and 14th CpG sites may suppress COL1A1 gene expression by altering Adf-1 and Sp1 binding. "
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate whether myopia development is associated with changes of scleral DNA methylation in cytosine-phosphate-guanine (CpG) sites in the collagen 1A1 (COL1A1) promoter and messenger RNA (mRNA) levels following murine form deprivation myopia. Fifty-seven C57BL/6 mice (postnatal day 23) were randomly assigned to four groups: (1) monocular form deprivation (MD) in which a diffuser lens was placed over one eye for 28 days; (2) normal controls without MD; (3) MD recovery in which the diffuser lens was removed for seven days; and (4) MD recovery normal controls. The DNA methylation pattern in COL1A1 promoter and exon 1 was determined by bisulfite DNA sequencing, and the COL1A1 mRNA level in sclera was determined by quantitative PCR. MD was found to induce myopia in the treated eyes. Six CpG sites in the promoter and exon 1 region of COL1A1 were methylated with significantly higher frequency in the treated eyes than normal control eyes (p<0.05), with CpG island methylation in MD-contralateral eyes being intermediate. Consistent with the CpG methylation, scleral COL1A1 mRNA was reduced by 57% in the MD-treated eyes compared to normal controls (p<0.05). After seven days of MD recovery, CpG methylation was significantly reduced (p=0.01). The methylation patterns returned to near normal level in five CpG sites, but the sixth was hypomethylated compared to normal controls. In parallel with the development of myopia and the reduced COL1A1 mRNA, the frequency of methylation in CpG sites of the COL1A1 promoter/exon 1 increased during MD and returned to near normal during recovery. Thus, hypermethylation of CpG sites in the promoter/exon 1 of COL1A1 may underlie reduced collagen synthesis at the transcriptional level in myopic scleras.
    Molecular vision 05/2012; 18:1312-24. · 1.99 Impact Factor
  • Source
    • "Overdrive encodes a protein with a Myb/SANT-like domain in an Adf-1 (MADF) DNA-binding domain. Adf-1 is a transcription factor known to activate genes regulated during Drosophila development (England et al. 1992). Some meiotic drive systems and hybrid-sterilityconferring genes share common factors that can be incorporated into a potential single mechanistic explanation for the link between these two phenotypes: chromatin remodelling. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Meiotic drive causes the distortion of allelic segregation away from Mendelian expected ratios, often also reducing fecundity and favouring the evolution of drive suppressors. If different species evolve distinct drive-suppressor systems, then hybrid progeny may be sterile as a result of negative interactions of these systems' components. Although the hypothesis that meiotic drive may contribute to hybrid sterility, and thus species formation, fell out of favour early in the 1990s, recent results showing an association between drive and sterility have resurrected this previously controversial idea. Here, we review the different forms of meiotic drive and their possible roles in speciation. We discuss the recent empirical evidence for a link between drive and hybrid male sterility, also suggesting a possible mechanistic explanation for this link in the context of chromatin remodelling. Finally, we revisit the population genetics of drive that allow it to contribute to speciation.
    Philosophical Transactions of The Royal Society B Biological Sciences 04/2010; 365(1544):1265-72. DOI:10.1098/rstb.2009.0264 · 7.06 Impact Factor
Show more