Article

# A note on insensitivity in stochastic networks

Journal of Applied Probability (Impact Factor: 0.55). 12/2006; DOI: 10.1239/jap/1175267175

Source: arXiv

- [Show abstract] [Hide abstract]

**ABSTRACT:**Polynomial convergence rates in total variation are established in Erlang--Sevastyanov's type problem with an infinite number of servers and a general distribution of service under assumptions on the intensity of serving.Queueing Systems 10/2013; 76(2). · 0.44 Impact Factor - [Show abstract] [Hide abstract]

**ABSTRACT:**We consider a system with Poisson arrivals and i.i.d. service times. The requests are served according to the state-dependent processor-sharing discipline, where each request receives a service capacity which depends on the actual number of requests in the system. The linear systems of PDEs describing the residual and attained sojourn times coincide for this system, which provides time reversibility including sojourn times for this system, and their minimal non-negative solution gives the LST of the sojourn time V(τ) of a request with required service time τ. For the case that the service time distribution is exponential in a neighborhood of zero, we derive a linear system of ODEs, whose minimal non-negative solution gives the LST of V(τ), and which yields linear systems of ODEs for the moments of V(τ) in the considered neighborhood of zero. Numerical results are presented for the variance of V(τ). In the case of an M/GI/2-PS system, the LST of V(τ) is given in terms of the solution of a convolution equation in the considered neighborhood of zero. For service times bounded from below, surprisingly simple expressions for the LST and variance of V(τ) in this neighborhood of zero are derived, which yield in particular the LST and variance of V(τ) in M/D/2-PS.Queueing Systems 01/2010; 64(2). · 0.44 Impact Factor - [Show abstract] [Hide abstract]

**ABSTRACT:**We deal with additive functionals of stationary processes. It is shown that under some assumptions a stationary model of the time-changed process exists. Further, bounds for the expectation of functions of additive functionals are derived. As an application we analyze virtual sojourn times in an infinite-server system where the service speed is governed by a stationary process. It turns out that the sojourn time of some kind of virtual requests equals in distribution an additive functional of a stationary time-changed process, which provides bounds for the expectation of functions of virtual sojourn times, in particular bounds for fractional moments and the distribution function. Interpreting the GI(n)/GI(n)/∞ system or equivalently the GI(n)/GI system under state-dependent processor sharing as an infinite-server system where the service speed is governed by the number n of requests in the system provides results for sojourn times of virtual requests. In the case of M(n)/GI(n)/∞, the sojourn times of arriving and added requests equal in distribution sojourn times of virtual requests in modified systems, which yields several results for the sojourn times of arriving and added requests. In case of positive integer moments, the bounds generalize earlier results for M/GI(n)/∞. In particular, the mean sojourn times of arriving and added requests in M(n)/GI(n)/∞ are proportional to the required service time, generalizing Cohen’s famous result for M/GI(n)/∞.Queueing Systems 01/2012; 70(4). · 0.44 Impact Factor

Data provided are for informational purposes only. Although carefully collected, accuracy cannot be guaranteed. The impact factor represents a rough estimation of the journal's impact factor and does not reflect the actual current impact factor. Publisher conditions are provided by RoMEO. Differing provisions from the publisher's actual policy or licence agreement may be applicable.