Article

Effect of nanoparticles on transdermal drug delivery.

Institut für Pharmazeutische Technologie, J. W. Goethe-Universität, Frankfurt, Germany.
Journal of Microencapsulation (Impact Factor: 1.57). 01/1991; 8(3):369-74. DOI: 10.3109/02652049109069563
Source: PubMed

ABSTRACT The purpose of the present study was to assess by in vitro means the effect of poly (methylmethacrylate) nanoparticles and poly (butylcyanoacrylate) nanoparticles on transdermal drug delivery. Methanol and octanol were chosen as test permeants. In order to distinguish between thermodynamic effect and those due to biological consequences, two different membranes were employed, i.e., full thickness hairless mouse skin and silicone elastomer sheeting (175 microns). It is evident that poly (methylmethacrylate) nanoparticles and poly (butylcyanoacrylate) nanoparticles increase the permeability of methanol through hairless mouse skin by a factor of 1.2-2. The permeability of lipophilic octanol is either unaffected by nanoparticles or decreases as a function of nanoparticle concentration depending on the lipophilicity of the polymer material.

0 Bookmarks
 · 
90 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Iron deficiency is one of the most prevalent and serious health issues among people all over the world. Iron-dextran (ID) colloidal solution is one among the very few US Food and Drug Administration (FDA)-approved iron sources for parenteral administration of iron. Parenteral route does not allow frequent administration because of its invasiveness and other associated complications. The main aim of this project was to investigate the plausibility of transdermal delivery of ID facilitated by microneedles, as an alternative to parenteral iron therapy. In vitro permeation studies were carried out using freshly excised hairless rat abdominal skin in a Franz diffusion apparatus. Iron repletion studies were carried out in hairless anemic rat model. The anemic rats were divided into intact skin (control), microneedle pretreated, and intraperitoneal (i.p.) groups depending on the mode of delivery of iron. The hematological parameters were measured intermittently during treatment. There was no improvement in the hematological parameters in case of control group, whereas, in case of microneedle pretreated and i.p. group, there was significant improvement within 2-3 weeks. The results suggest that microneedle-mediated delivery of ID could be developed as a potential treatment method for iron-deficiency anemia. © 2012 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci.
    Journal of Pharmaceutical Sciences 12/2012; · 3.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to develop and optimize a transdermal gel formulation for Diclofenac diethylamine (DDEA) and Curcumin (CRM). A 3-factor, 3-level Box-Behnken design was used to derive a second-order polynomial equation to construct contour plots for prediction of responses. Independent variables studied were the polymer concentration (X(1)), ethanol (X(2)) and propylene glycol (X(3)) and the levels of each factor were low, medium, and high. The dependent variables studied were the skin permeation rate of DDEA (Y(1)), skin permeation rate of CRM (Y(2)), and viscosity of the gels (Y(3)). Response surface plots were drawn, statistical validity of the polynomials was established to find the compositions of optimized formulation which was evaluated using the Franz-type diffusion cell. The permeation rate of DDEA increased proportionally with ethanol concentration but decreased with polymer concentration, whereas the permeation rate of CRM increased proportionally with polymer concentration. Gels showed a non-Fickian super case II (typical zero order) and non-Fickian diffusion release mechanism for DDEA and CRM, respectively. The design demonstrated the role of the derived polynomial equation and contour plots in predicting the values of dependent variables for the preparation and optimization of gel formulation for transdermal drug release.
    Journal of Pharmaceutical Sciences 02/2011; 100(2):580-93. · 3.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transdermal drug delivery offers an attractive alternative to the conventional drug-delivery methods of oral administration and injection. Apart from the convenience and noninvasiveness, the skin also provides a “reservoir” that sustains delivery over a period of days. It offers multiple sites to avoid local irritation and toxicity, yet it can also offer the option of concentrating drugs at local areas to avoid undesirable systemic effects. However, at present, the clinical use of transdermal delivery is limited by the fact that very few drugs can be delivered transdermally at a viable rate. This difficulty is because the stratum corneum of skin acts as an efficient barrier that limits penetration of drugs through the skin, and few noninvasive methods are known to significantly enhance the penetration of this barrier. In order to increase the range of drugs available for transdermal delivery, the use of nanocarriers has emerged as an interesting and valuable alternative for delivering lipophilic and hydrophilic drugs throughout the stratum corneum with the possibility of having a local or systemic effect for the treatment of many different diseases. These nanocarriers (nanoparticles, ethosomes, dendrimers, liposomes, etc) can be made of a lot of different materials, and they are very different in structure and chemical nature. They are too small to be detected by the immune system, and furthermore they can deliver the drug in the target organ using lower drug doses in order to reduce side effects.
    Research and Reports in Transdermal Drug Delivery. 11/2012; 2012:1(1):3.