Article

A model for the propagation and scattering of ultrasound in tissue.

Electronics Institute, Technical University of Denmark, Lyngby.
The Journal of the Acoustical Society of America (Impact Factor: 1.65). 02/1991; 89(1):182-90.
Source: PubMed

ABSTRACT An inhomogeneous wave equation is derived describing propagation and scattering of ultrasound in an inhomogeneous medium. The scattering term is a function of density and propagation velocity perturbations. The integral solution to the wave equation is combined with a general description of the field from typical transducers used in clinical ultrasound to yield a model for the received pulse-echo pressure field. Analytic expressions are found in the literature for a number of transducers, and any transducer excitation can be incorporated into the model. An example is given for a concave, nonapodized transducer in which the predicted pressure field is compared to a measured field.

0 Bookmarks
 · 
168 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The paper describes a new method for determining the velocity vector of a remotely sensed object using either sound or electromagnetic radiation. The movement of the object is determined from a field with spatial oscillations in both the axial direction of the transducer and in one or two directions transverse to the axial direction. By using a number of pulse emissions, the inter-pulse movement can be estimated and the velocity found from the estimated movement and the time between pulses. The method is based on the principle of using transverse spatial modulation for making the received signal influenced by transverse motion. Such a transverse modulation can be generated by using apodization on individual transducer array elements together with a special focusing scheme. A method for making such a field is presented along with a suitable two-dimensional velocity estimator. An implementation usable in medical ultrasound is described, and simulated results are presented. Simulation results for a flow of 1 m/s in a tube rotated in the image plane at specific angles (0, 15, 35, 55, 75, and 90 degrees) are made and characterized by the estimated mean value, estimated angle, and the standard deviation in the lateral and longitudinal direction. The average performance of the estimates for all angles is: mean velocity 0.99 m/s, longitudinal S.D. 0.015 m/s, and lateral S.D. 0.196 m/s. For flow parallel to the transducer the results are: mean velocity 0.95 m/s, angle 0.10, longitudinal S.D. 0.020 m/s, and lateral S.D. 0.172 m/s.
    IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 02/1998; 45(3):837-51. · 1.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Focal drug delivery to a vessel wall facilitated by intravascular ultrasound and microbubbles holds promise as a potential therapy for atherosclerosis. Conventional methods of microbubble administration result in rapid clearance from the bloodstream and significant drug loss. To address these limitations, we evaluated whether drug delivery could be achieved with transiently stable microbubbles produced in real time and in close proximity to the therapeutic site. Rat aortic smooth muscle cells were placed in a flow chamber designed to simulate physiological flow conditions. A flow-focusing microfluidic device produced 8 μm diameter monodisperse microbubbles within the flow chamber, and ultrasound was applied to enhance uptake of a surrogate drug (calcein). Acoustic pressures up to 300 kPa and flow rates up to 18 mL/s were investigated. Microbubbles generated by the flow-focusing microfluidic device were stabilized with a polyethylene glycol-40 stearate shell and had either a perfluorobutane (PFB) or nitrogen gas core. The gas core composition affected stability, with PFB and nitrogen microbubbles exhibiting half-lives of 40.7 and 18.2 s, respectively. Calcein uptake was observed at lower acoustic pressures with nitrogen microbubbles (100 kPa) than with PFB microbubbles (200 kPa) (p < 0.05, n > 3). In addition, delivery was observed at all flow rates, with maximal delivery (>70% of cells) occurring at a flow rate of 9 mL/s. These results demonstrate the potential of transiently stable microbubbles produced in real time and in close proximity to the intended therapeutic site for enhancing localized drug delivery.
    Ultrasound in medicine & biology 04/2013; · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intravascular ultrasound elastography (IVUSe) could improve the diagnosis of cardiovascular disease by revealing vulnerable plaques through their mechanical tissue properties. To improve the performance of IVUSe, we developed and implemented a non-rigid image-registration method to visualize the radial and circumferential component of strain within vascular tissues. We evaluated the algorithm's performance with four initialization schemes using simulated and experimentally acquired ultrasound images. Applying the registration method to radio-frequency (RF) echo frames improved the accuracy of displacements compared to when B-mode images were employed. However, strain elastograms measured from RF echo frames produce erroneous results when both the zero-initialization method and the mesh-refinement scheme were employed. For most strain levels, the cross-correlation-initialization method produced the best performance. The simulation study predicted that elastograms obtained from vessels with average strains in the range of 3%-5% should have high elastographic signal-to-noise ratio (SNRe)-on the order of 4.5 and 7.5 for the radial and circumferential components of strain, respectively. The preliminary in vivo validation study (phantom and an atherosclerotic rabbit) demonstrated that the non-rigid registration method could produce useful radial and circumferential strain elastograms under realistic physiologic conditions. The results of this investigation were sufficiently encouraging to warrant a more comprehensive in vivo validation.
    Ultrasound in medicine & biology 12/2012; · 2.46 Impact Factor

Full-text (2 Sources)

View
5 Downloads
Available from
Sep 11, 2014