An overview of the electrochemical reduction of oxygen at carbon-based modified electrodes

Journal of the Iranian Chemical Society (Impact Factor: 1.09). 03/2005; 2(1):1-25. DOI: 10.1007/BF03245775


We present an overview of the electrochemical reduction of oxygen in water, focussing on carbon-based and modified carbon electrodes. This process is of importance for gas sensing, in fuel cells and in the electrosynthesis of hydrogen peroxide.

Download full-text


Available from: Craig E Banks,
  • Source
    • "The electrochemical reduction of oxygen at modified electrodes has been recently reviewed. It is well documented in the literature that the oxygen reduction reaction on a modified electrode proceeds predominantly as a four-electron process producing H 2 O as the product [35] [36] [37] [38] "
    [Show abstract] [Hide abstract]
    ABSTRACT: An amperometric oxygen sensor based on a polymeric nickel–salen (salen = N,N′-ethylenebis(salicylideneiminato)) film coated platinum electrode was developed. The sensor was constructed by electropolymerization of nickel–salen complex at platinum electrode in acetonitrile/tetrabutylammonium perchlorate by cyclic voltammetry. The voltammetric behavior of the sensor was investigated in 0.5 mol L−1 KCl solution in the absence and presence of molecular oxygen. Thus, with the addition of oxygen to the solution, the increase of cathodic peak current (at −0.25 V vs. saturated calomel electrode (SCE)) of the modified electrode was observed. This result shows that the nickel–salen film on electrode surface promotes the reduction of oxygen. The reaction can be brought about electrochemically, where the nickel(II) complex is first reduced to a nickel(I) complex at the electrode surface. The nickel(I) complex then undergoes a catalytic oxidation by the molecular oxygen in solution back to the nickel(II) complex, which can then be electrochemically re-reduced to produce an enhancement of the cathodic current. The Tafel plot analyses have been used to elucidate the kinetics and mechanism of the oxygen reduction. A plot of the cathodic current vs. the dissolved oxygen concentration for chronoamperometry (fixed potential = −0.25 V vs. SCE) at the sensor was linear in the 3.95–9.20 mg L−1 concentration range and the concentration limit was 0.17 mg L−1 O2. The proposed electrode is useful for the quality control and routine analysis of dissolved oxygen in commercial samples and environmental water. The results obtained for the levels of dissolved oxygen are in agreement with the results obtained with a commercial O2 sensor.
    Sensors and Actuators B Chemical 12/2012; 175:111–117. DOI:10.1016/j.snb.2011.12.098 · 4.10 Impact Factor
  • Source
    • "In a previous report [12] the electrochemical reduction of H 2 O 2 on carbon nanorod paste electrode (SCNRPE) prepared without the use of d-metallic catalysts has been reported. In that study, hydrogen peroxide was selected as one of model compounds since its detection is often needed, for example, in studying oxidative stress in bio-systems [13] [14], low temperature fuel cell processes, [15] [16] and in the studies of corrosion processes [17] [18]. Paste electrodes , as selected in this study, as working electrodes are useful because they (1) are simple to prepare and handle, (2) demonstrate reasonable reproducibility, (3) have a low "
    [Show abstract] [Hide abstract]
    ABSTRACT: Metallic impurity free solid carbon nanorod “Whiskers” (SCNR Whiskers), a derivative of carbon nanotubes, are explored in the fabrication of a Prussian Blue composite electrode and critically evaluated towards the mediated electroanalytical sensing of H2O2. The sensitivity and detection limits for H2O2 on the paste electrodes containing 20% (w/w) Prussian Blue, mineral oil, and carbon nanorod whiskers were explored and found to be 120 mA/(M cm2) and 4.1 μM, respectively, over the concentration range 0.01 to 0.10 mM. Charge transfer constant for the 20% Prussian Blue containing SCNR Whiskers paste electrode was calculated, for the reduction of Prussian Blue to Prussian White, to reveal a value of 1.8 ± 0.2 1/s ( α = 0.43 , N = 3 ). Surprisingly, our studies indicate that these metallic impurity-free SCNR Whiskers, in this configuration, behave electrochemically similar to that of an electrode constructed from graphite.
    01/2012; 2012. DOI:10.1155/2012/238419
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Klaassüsinik-, nikkel- ja kuldelektroodide pinna modifitseerimiseks arüülrühmadega kasutati vastavate diasooniumisoolade elektrokeemilist redutseerumist. Hapniku redutseerumist uuriti fenüül-, naftüül-, antratsenüül-, bifenüül-, 4-bromofenüül, 4-detsüülfenüül- ja 4-nitrofenüülrühmadega modifitseeritud klaassüsinikelektroodidel, kasutades pöörleva ketaselektroodi meetodit. Võrdleval eesmärgil uuriti ka Fe(CN)6 3-/4- redokspaari ning dopamiini elektrokeemilist käitumist. Arüülrühmadega modifitseeritud elektroodide blokeerivad omadused omavad suurt tähtsust mitmetes kasutusvaldkondades, näiteks elektrokatalüüsis ja elektroanalüüsis. Klaassüsinikelektroodi spontaanne modifitseerimine antrakinooniga viidi läbi sukeldades elektroode erinevateks ajavahemikeks vastava diasooniumisoola lahusesse. Spontaanselt modifitseeritud antrakinooni elektrokatalüütiline efekt hapniku redutseerumisele klaassüsinikelektroodidel oli võrreldav elektrokeemiliselt modifitseeritud antrakinooni puhul saadud tulemustega. Sarnased tulemused saadi ka in situ sünteesitud antrakinooni diasooniumsooladega modifitseeritud klaassüsinikelektroodidel. Atsetonitriilis ja happelises vesikeskkonnas modifitseeritud elektroodid näitasid sarnast elektrokatalüütilist aktiivsust hapniku redutseerumisel 0,1 M KOH lahuses. Hapniku redutseerumist uuriti ka antrakinooniga modifitseeritud nikkelelektroodidel ning täheldati kõrget elektrokatalüütililist aktiivsust sellele reaktsioonile. Nikkelelektroodi pinda modifitseeriti ka 4-nitrofenüülrühmadega. Modifitseeritud elektroodid näitasid häid blokeerivaid omadusi Fe(CN)6 3-/4- redokspaari laenguülekandeprotsessile. Diasooniumisoola redutseerumise meetodil modifitseeriti ka kuldelektroode. Arüülkilede kasvamist kullal iseloomustati kvartsmikrokaalude meetodiga. Arüülkile kasvu ja paksuse uurimiseks kasutatud aatomjõumikroskoopiline meetod näitas, et moodustunud arüülkile ei ole kompaktne, vaid pigem „mügarlik“ ning hõredalt pakitud. Tulemusi kinnitasid ka röntgenfotoelektronspektroskoopilised mõõtmised, mis demonstreerisid 4-bromofenüül- ja 4-nitrofenüülrühmade kõrgeid pindkontsentratsioone kulla pinnal. Hapniku redutseerumine arüülkiledega modifitseeritud kuldelektroodidel oli inhibeeritud väiksemal määral kui Fe(CN)6 3-/4- ja dopamiini redokspaaride laenguülekandeprotsess. The surface of glassy carbon (GC), nickel and gold electrodes was modified with aryl groups using the electrochemical reduction of the corresponding diazonium salts. The reduction of oxygen was studied on phenyl, naphthyl, anthracenyl, biphenyl, 4-bromophenyl, 4-decylphenyl and 4-nitrophenyl modified GC electrodes using the rotating disk electrode method. For comparison purposes the electrochemical response of the Fe(CN)6 3-/4- and dopamine redox probes on aryl modified GC electrodes was also investigated. The blocking behaviour of aryl films is of paramount importance in many fields, including electrocatalysis and electroanalysis. The spontaneous grafting of GC surface with anthraquinone (AQ) was achieved by immersion of the substrate in the solutions of its diazonium derivative for different periods of time. The electrocatalytic effect of spontaneously grafted anthraquinone on oxygen reduction was comparable to that of the electrochemically grafted electrodes. The modification of glassy carbon with in situ generated anthraquinone diazonium cations was analogous to that using previously synthesised anthraquinone diazonium salts. Electrodes modified in acetonitrile and in aqueous acidic solution showed similar electrocatalytic activity for oxygen reduction in 0.1 M KOH. The reduction of oxygen was studied on AQ modified nickel electrodes and a high electrocatalytic activity for this reaction was observed. The Ni electrode surface was also modified with nitrophenyl (NP) groups. The blocking action of NP films for the Fe(CN)6 3-/4- redox system was in evidence. The surface of Au electrodes was also modified with aryl groups using the diazonium reduction method. The EQCM results gave further insight into the growth of these films on gold. AFM studies of the film growth revealed that the aryl films do not grow uniformly and a rather granular growth is evident, which does not result in compact but rather loosely packed film. This finding is supported by XPS studies that demonstrated high surface concentration of bromophenyl and nitrophenyl groups. The barrier properties of aryl films on Au were studied, revealing that O2 reduction was inhibited to a lesser extent than the electron transfer kinetics of the Fe(CN)6 3-/4- and dopamine redox probes. Väitekirja elektrooniline versioon ei sisalda publikatsioone.
Show more