Article

A genetic study of the anesthetic response: mutants of Drosophila melanogaster altered in sensitivity to halothane.

Laboratory of Molecular Biology, National Institute of Mental Health, Bethesda, MD 20892.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 12/1990; 87(21):8632-6. DOI: 10.1073/pnas.87.21.8632
Source: PubMed

ABSTRACT In an attempt to identify genes that control or encode the targets of general anesthetics, we have chemically mutagenized fruit flies and selected four lines that show an abnormal response to the volatile anesthetic halothane. Specifically, about 2-fold higher concentrations of halothane are required to induce the loss of motor control in the mutant flies. Fine mapping of two isolates indicates that they alter a previously uncharacterized gene of Drosophila. In the absence of anesthetics, these mutants display alterations of behavior that imply changes in the adult and the larval neuromuscular system.

0 Bookmarks
 · 
151 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Molecular mechanisms underlying the functioning of central pattern generators (CPGs) are poorly understood. Investigations using genetic approaches in the model organism, Drosophila, may help to identify unknown molecular players participating in the formation or control of motor patterns. Here we report Drosophila genes as candidates for involvement in the neural mechanisms responsible for motor functions, such as locomotion and courtship song. Twenty-two Drosophila lines, used for gene identification, were isolated from a previously created collection of 1064 lines, each carrying a P element insertion in one of the autosomes. The lines displayed extreme deviations in locomotor and/or courtship song parameters compared with the whole collection. The behavioral consequences of CNS-specific RNAi-mediated knockdowns for 10 identified genes were estimated. The most prominent changes in the courtship song interpulse interval (IPI) were seen in flies with Sps2 or CG15630 knockdown. Glia-specific knockdown of these genes produced no effect on the IPI. Estrogen-induced knockdown of CG15630 in adults reduced the IPI. The product of the CNS-specific gene, CG15630 (a predicted cell surface receptor), is likely to be directly involved in the functioning of the CPG generating the pulse song pattern. Future studies should ascertain its functional role in the neurons that constitute the song CPG. Other genes (Sps2, CG34460), whose CNS-specific knockdown resulted in IPI reduction, are also worthy of detailed examination.
    Fly 12/2014; · 1.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We show that the general anesthetics xenon, sulfur hexafluoride, nitrous oxide, and chloroform cause rapid increases of different magnitude and time course in the electron spin content of Drosophila. With the exception of CHCl3, these changes are reversible. Anesthetic-resistant mutant strains of Drosophila exhibit a different pattern of spin responses to anesthetic. In two such mutants, the spin response to CHCl3 is absent. We propose that these spin changes are caused by perturbation of the electronic structure of proteins by general anesthetics. Using density functional theory, we show that general anesthetics perturb and extend the highest occupied molecular orbital of a nine-residue α-helix. The calculated perturbations are qualitatively in accord with the Meyer-Overton relationship and some of its exceptions. We conclude that there may be a connection between spin, electron currents in cells, and the functioning of the nervous system.
    Proceedings of the National Academy of Sciences of the United States of America. 08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ion channels are crucial components of cellular excitability and are involved in many neurological diseases. This review focuses on the sodium leak, G protein-coupled receptors (GPCRs)-activated NALCN channel that is predominantly expressed in neurons where it regulates the resting membrane potential and neuronal excitability. NALCN is part of a complex that includes not only GPCRs, but also UNC-79, UNC-80, NLF-1 and src family of Tyrosine kinases (SFKs). There is growing evidence that the NALCN channelosome critically regulates its ion conduction. Both in mammals and invertebrates, animal models revealed an involvement in many processes such as locomotor behaviors, sensitivity to volatile anesthetics, and respiratory rhythms. There is also evidence that alteration in this NALCN channelosome can cause a wide variety of diseases. Indeed, mutations in the NALCN gene were identified in Infantile Neuroaxonal Dystrophy (INAD) patients, as well as in patients with an Autosomal Recessive Syndrome with severe hypotonia, speech impairment, and cognitive delay. Deletions in NALCN gene were also reported in diseases such as 13q syndrome. In addition, genes encoding NALCN, NLF- 1, UNC-79, and UNC-80 proteins may be susceptibility loci for several diseases including bipolar disorder, schizophrenia, Alzheimer's disease, autism, epilepsy, alcoholism, cardiac diseases and cancer. Although the physiological role of the NALCN channelosome is poorly understood, its involvement in human diseases should foster interest for drug development in the near future. Toward this goal, we review here the current knowledge on the NALCN channelosome in physiology and diseases.
    Frontiers in Cellular Neuroscience 01/2014; 8:132. · 4.18 Impact Factor

Full-text (2 Sources)

Download
28 Downloads
Available from
May 20, 2014