Article

Sustained limitation of myocardial reperfusion injury by a monoclonal antibody that alters leukocyte function.

Department of Pharmacology, University of Michigan Medical School, Ann Arbor 48109.
Circulation (Impact Factor: 15.2). 02/1990; 81(1):226-37. DOI: 10.1161/01.CIR.81.1.226
Source: PubMed

ABSTRACT Pentobarbital anesthetized dogs were subjected to 90 minutes of left circumflex coronary artery (LCCA) occlusion followed by 72 hours of reperfusion. Control or anti-Mo1 (904) F(ab')2 fragments of monoclonal antibodies were administered intravenously at a dose of 1 mg/kg beginning 45 minutes after occlusion and at a dose of 0.5 mg/kg at 12, 24, 36, and 48 hours after reperfusion. Myocardial infarct size expressed as a percentage of the area at risk (IN/AR) measured postmortem after 72 hours of reperfusion was significantly reduced by 904 F(ab')2 (21.6 +/- 2.8%, n = 8) compared with control F(ab')2 (37.4 +/- 5.8%, n = 8; p less than 0.025). There were no significant differences between groups in heart rate, mean arterial blood pressure, rate-pressure product, or LCCA blood flow that could account for a reduced infarct size. Regional myocardial blood flow (RMBF) was determined with 15-microns radiolabeled microspheres. Transmural blood flows (ml/min/g) within the region of myocardium at risk were not statistically different between treatment groups. Infarct size in both groups was related to regional myocardial blood flow, and the relation was shifted downward in the group treated with the anti-Mo1 F(ab')2 antibody (analysis of covariance, p = 0.01). Thus, anti-Mo1 F(ab')2 produces a sustained limitation of myocardial infarct size compared with controls under similar hemodynamic conditions and a similar degree of myocardial ischemia as determined by RMBF. These data suggest that inhibition of neutrophil adhesive interactions (as suggested by the inhibitory effect of anti-Mo1 on canine neutrophil aggregation) may be an effective mechanism for protection against myocardial injury secondary to myocardial ischemia and reperfusion.

0 Bookmarks
 · 
62 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Immunotherapy represents an active area of biomedical research to treat cancer, autoimmune diseases, and neurodegenerative disorders. In stroke, recanalization therapy is effective in reducing brain tissue damage after acute ischemic stroke. However, the narrow time window restricts its application for the majority of stroke patients. There is an urgent need to develop adjuvant therapies such as immunotherapy, stem cell replacement, and neuroprotective drugs. A number of molecules have been targeted for immunotherapy in stroke management, including myelin-associated proteins and their receptors, N-methyl-d-aspartic acid receptors, cytokines, and cell adhesion molecules. Both active vaccination and passive antibodies were tested in animal models of acute ischemic stroke. However, the mechanisms underlying the efficacy of immunotherapy are different for each target protein. Blocking myelin-associated proteins may enhance neuroplasticity, whereas blocking adhesion molecules may yield neuroprotection by suppressing the immune response after stroke. Although results from animal studies are encouraging, clinical trials using therapeutic antibodies failed to improve stroke outcome due to severe side effects. It remains a challenge to generate specific therapeutic antibodies with minimal side effects on other organs and systems.
    Translational stroke research. 01/2013; 4:477-483.
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neutrophil activation and adhesion must be tightly controlled to prevent complications associated with excessive inflammatory responses. The role of the anti-inflammatory peptide chemerin15 (C15) and the receptor ChemR23 in neutrophil physiology is unknown. Here, we report that ChemR23 is expressed in neutrophil granules and rapidly upregulated upon neutrophil activation. C15 inhibits integrin activation and clustering, reducing neutrophil adhesion and chemotaxis in vitro. In the inflamed microvasculature, C15 rapidly modulates neutrophil physiology inducing adherent cell detachment from the inflamed endothelium, while reducing neutrophil recruitment and heart damage in a murine myocardial infarction model. These effects are mediated through ChemR23. We identify the C15/ChemR23 pathway as a new regulator and thus therapeutic target in neutrophil-driven pathologies.
    EMBO Reports 09/2013; · 7.19 Impact Factor

Full-text (2 Sources)

Download
43 Downloads
Available from
May 21, 2014