Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa.

Drug Delivery Systems Research, Upjohn Company, Kalamazoo, Michigan 49001.
Pharmaceutical Research (Impact Factor: 4.74). 10/1990; 7(9):902-10. DOI: 10.1023/A:1015937605100
Source: PubMed

ABSTRACT Human colon adenocarcinoma (Caco-2) cells, when grown on semipermeable filters, spontaneously differentiate in culture to form confluent monolayers which both structurally and functionally resemble the small intestinal epithelium. Because of this property they show promise as a simple, in vitro model for the study of drug absorption and metabolism during absorption in the intestinal mucosa. In the present study, the transport of several model solutes across Caco-2 cell monolayers grown in the Transwell diffusion cell system was examined. Maximum transport rates were found for the actively transported substance glucose and the lipophilic solutes testosterone and salicyclic acid. Slower rates were observed for urea, hippurate, and saliylate anions and were correlated with the apparent partition coefficient of the solute. These results are similar to what is found with the same compounds in other, in vivo absorption model systems. It is concluded that the Caco-2 cell system may give useful predictions concerning the oral absorption potential of new drug substances.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Oral delivery of therapeutics, particularly protein-based pharmaceutics, is of great interest for safe and controlled drug delivery for patients. Hydrogels offer excellent potential as oral therapeutic systems due to inherent biocompatibility, diversity of both natural and synthetic material options and tunable properties. In particular, stimuli-responsive hydrogels exploit physiological changes along the intestinal tract to achieve site-specific, controlled release of protein, peptide and chemotherapeutic molecules for both local and systemic treatment applications. Areas covered: This review provides a wide perspective on the therapeutic use of hydrogels in oral delivery systems. General features and advantages of hydrogels are addressed, with more considerable focus on stimuli-responsive systems that respond to pH or enzymatic changes in the gastrointestinal environment to achieve controlled drug release. Specific examples of therapeutics are given. Last, in vitro and in vivo methods to evaluate hydrogel performance are discussed. Expert opinion: Hydrogels are excellent candidates for oral drug delivery, due to the number of adaptable parameters that enable controlled delivery of diverse therapeutic molecules. However, further work is required to more accurately simulate physiological conditions and enhance performance, which is important to achieve improved bioavailability and increase commercial interest.
    Expert Opinion on Drug Delivery 06/2014; 11(6):901-15. · 4.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Developing siRNA therapeutics poses technical challenges including appropriate molecular design and testing in suitable pre-clinical models. We previously detailed sequence-selection and modification strategies for siRNA candidates targeting STAT6. Here, we describe methodology that evaluates the suitability of candidate siRNA for respiratory administration. Chemically-modified siRNA exhibited similar inhibitory activity (IC50) against STAT6 in vitro compared to unmodified siRNA and apical exposure testing with Caco-2 cell monolayers showed modification was not associated with cellular toxicity. Use of a modified RNA extraction protocol improved the sensitivity of a PCR-based bio-analytical assay (lower limit of siRNA strand quantification = 0.01 pg/µl) which was used to demonstrate that lung distribution profiles for both siRNAs were similar following intra-tracheal administration. However, after 6 hours, modified siRNA was detected in lung tissue at concentrations >1000-fold higher than unmodified siRNA. Evaluation in a rat model of allergic inflammation confirmed the persistence of modified siRNA in vivo, which was detectable in broncho-alveolar lavage (BAL) fluid, BAL cells and lung tissue samples, 72 hours after dosing. Based upon the concept of respiratory allergy as a single airway disease, we considered nasal delivery as a route for respiratory targeting, evaluating an intra-nasal exposure model that involved simple dosing followed by fine dissection of the nasal cavity. Notably, endogenous STAT6 expression was invariant throughout the nasal cavities and modified siRNA persisted for at least 3 days after administration. Coupled with our previous findings showing upregulated expression of inflammatory markers in nasal samples from asthmatics, these findings support the potential of intranasal siRNA delivery. In summary, we demonstrate the successful chemical modification of STAT6 targeting siRNA, which enhanced bio-availability without cellular toxicity or reduced efficacy. We have established a robust, sensitive method for determining siRNA bio-distribution in vivo, and developed a nasal model to aid evaluation. Further work is warranted.
    PLoS ONE 01/2014; 9(2):e90338. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Existem, atualmente, centenas de peptídios e proteínas com ação terapêutica. Os obstáculos inerentes à sua administração oral têm impulsionado a investigação de estratégias capazes de os ultrapassar. Nesta revisão são abordados estes dois aspectos. A microencapsulação, pela sua versatilidade, sobressai entre as demais estratégias, afirmando-se como escolha potencial na administração oral de fármacos peptídicos.
    Revista Brasileira de Ciências Farmacêuticas 06/2002; 38(2):125-140.