Article

Clinical antecedents to in-hospital cardiopulmonary arrest.

University of Miami, كورال غيبلز، فلوريدا, Florida, United States
Chest (Impact Factor: 7.13). 01/1991; 98(6):1388-92. DOI: 10.1378/chest.98.6.1388
Source: PubMed

ABSTRACT While the outcome of in-hospital cardiopulmonary arrest has been studied extensively, the clinical antecedents of arrest are less well defined. We studied a group of consecutive general hospital ward patients developing cardiopulmonary arrest. Prospectively determined definitions of underlying pathophysiology, severity of underlying disease, patient complaints, and clinical observations were used to determine common clinical features. Sixty-four patients arrested 161 +/- 26 hours following hospital admission. Pathophysiologic alterations preceding arrest were classified as respiratory in 24 patients (38 percent), metabolic in 7 (11 percent), cardiac in 6 (9 percent), neurologic in 4 (6 percent), multiple in 17 (27 percent), and unclassified in 6 (9 percent). Patients with multiple disturbances had mainly respiratory (39 percent) and metabolic (44 percent) disorders. Fifty-four patients (84 percent) had documented observations of clinical deterioration or new complaints within eight hours of arrest. Seventy percent of all patients had either deterioration of respiratory or mental function observed during this time. Routine laboratory tests obtained before arrest showed no consistent abnormalities, but vital signs showed a mean respiratory rate of 29 +/- 1 breaths per minute. The prognoses of patients' underlying diseases were classified as ultimately fatal in 26 (41 percent), nonfatal in 23 (36 percent), and rapidly fatal in 15 (23 percent). Five patients (8 percent) survived to hospital discharge. Patients developing arrest on the general hospital ward services have predominantly respiratory and metabolic derangements immediately preceding their arrests. Their underlying diseases are generally not rapidly fatal. Arrest is frequently preceded by a clinical deterioration involving either respiratory or mental function. These features and the high mortality associated with arrest suggest that efforts to predict and prevent arrest might prove beneficial.

Full-text

Available from: Roland M Schein, Apr 21, 2015
0 Followers
 · 
166 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Early warning score (EWS) is a system that assists in the timely recognition of hospitalized patients outside critical care areas with potential or established critical illness at risk of deteriorating and who may be receiving suboptimal care. No such systems have been implemented in Portuguese National Health Service's wards. We performed a preliminary study to assess the potential outcome of applying the EWS in our hospital setting. An observational retrospective study was conducted based on 100 patients assessed by the outreach team due to an acute event. The EWS was calculated a posteriori on three preceding periods from the acute deterioration (-12, -24, and -72 h). In 35 patients, there was insufficient recording of vital signs. The final sample of 65 patients includes 62.0% men, and the mean age (±SD) was 67 ± 16 years old. Respiratory problems were the main cause of deterioration (44.6%). The EWS score increased from -72 to -12 h. More than half of cases (63.0%) were admitted into high care units, and their mean (±SD) score was higher in comparison to those remaining in general wards (Intermediate Care Units 3.75 ± 1.9, Intensive Care Units 4.2 ± 1.5, wards 3.5 ± 1.4). Score at -24 and -12 h seemed to predict length of stay (LoS; p < 0.05) and mortality, respectively. The EWS would have incremented early medical attention by 40.0% if a threshold of ≥3 was used. EWS systems are not widely used in Portuguese health service. Our data suggests that the EWS would allow early recognition for a higher number of patients in comparison to current ward care. Clinical worsening, lengths of stay, admission into high care units, and mortality may be predicted by the EWS. Prospective studies with multivariable analysis are needed to clarify the global outcome of the EWS implementation in national wards.
    International Journal of Emergency Medicine 01/2014; 7:22. DOI:10.1186/s12245-014-0022-7
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Severe adverse events such as cardiac arrest and death are often heralded by abnormal vital signs hours before the event. This necessitates an organized track and trigger approach of early recognition and response to subtle changes in a patient's condition. The Modified Early Warning System (MEWS) is one of such systems that use temperature, blood pressure, pulse, respiratory rate, and level of consciousness with each progressive higher score triggering an action. Root cause analysis for mortalities in our institute has led to the implementation of MEWS in an effort to improve patient outcomes. Here we discuss our experience and the impact of MEWS implementation on patient care at our community academic hospital. MEWS was implemented in a protocolized manner in June 2013. The following data were collected from non-ICU wards on a monthly basis from January 2010 to June 2014: 1) number of rapid response teams (RRTs) per 100 patient-days (100PD); 2) number of cardiopulmonary arrests 'Code Blue' per 100PD; and 3) result of each RRT and Code Blue (RRT progressed to Code Blue, higher level of care, ICU transfer, etc.). Overall inpatient mortality data were also analyzed. Since the implementation of MEWS, the number of RRT has increased from 0.24 per 100PD in 2011 to 0.38 per 100PD in 2013, and 0.48 per 100PD in 2014. The percentage of RRTs that progressed to Code Blue, an indicator of poor outcome of RRT, has been decreasing. In contrast, the numbers of Code Blue in non-ICU floors has been progressively decreasing from 0.05 per 100PD in 2011 to 0.02 per 100PD in 2013 and 2014. These improved clinical outcomes are associated with a decline of overall inpatient mortality rate from 2.3% in 2011 to 1.5% in 2013 and 1.2% in 2014. Implementation of MEWS in our institute has led to higher rapid response system utilization but lower cardiopulmonary arrest events; this is associated with a lower mortality rate, and improved patient safety and clinical outcomes. We recommend the widespread use of MEWS to improve patient outcomes.
    01/2015; 5(2):26716.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2015 and co-published as a series in Critical Care. Other articles in the series can be found online at http://ccforum.com/series/annualupdate2015 . Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901 .
    Critical care (London, England) 12/2015; 19(1):807. DOI:10.1186/s13054-015-0807-y