Kinematic and kinetic analysis of push-up exercise.

Orthopedic Biomechanics Laboratory, Mayo Clinic, Rochester, Minnesota.
Biomedical sciences instrumentation 02/1990; 26:53-7.
Source: PubMed

ABSTRACT The purpose of this study was to experimentally measure and analytically determine the load across the wrist, elbow, and shoulder joints during push-ups to better understand the nature of this exercise. A piezoelectric force platform was used to measure the vertical and two shear forces as well as the moment and the location of the center of pressure on the hand during a push-up. The electromagnetic tracking system was utilized to associate the force and moment measurement on the hand to the joints of the upper limbs. Factors which affect the intersegmental loads on the joints during push-ups include the location of the palm relative to the shoulder joint, the plane of arm movement, and the relative foot positions. In addition, the speed of push-ups also affects the amount of inertial load on top of the base static load.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The upper trapezius (UT) has been widely studied and related to alterations in clavicular kinematics in subject with shoulder disorders. However, the most common electrode site used to capture UT EMG is between C7 and the acromion, placing the electrodes over the acromial fibers rather than clavicular ones. Therefore, this study aimed to investigate the relationship between clavicular movements (elevation and retraction) and UT EMG recorded from three electrode sites (traditional electrode positioning and two different sites proposed for clavicular fibers evaluation). Furthermore, the position associated with the highest EMG during maximal isometric voluntary contractions (MVIC), for each electrode site, was determined for normalization purposes. EMG was simultaneously captured in the three electrode sites of 20 healthy subjects, during MVIC at five different positions and during shoulder elevation and abduction in scapular plane. Clavicular kinematics was recorded using an electromagnetic tracking system during the dynamic contractions. Shoulder abduction with head rotation and lateral flexion elicited the highest EMG amplitude on the three electrode sites and was used to normalize the signals. A cross-correlation analysis showed high correlations between all electrode sites and clavicular movements. However, the traditional electrode site seems to record more informative signals in healthy subjects.
    Journal of Electromyography and Kinesiology 07/2014; 24(6). DOI:10.1016/j.jelekin.2014.06.012 · 1.73 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Study Design Cross-sectional. Objectives To compare differences in glenohumeral joint angular motion and linear translations between symptomatic and asymptomatic individuals during shoulder motion performed in 3 planes of humerothoracic elevation. Background Numerous clinical theories have linked abnormal glenohumeral kinematics including decreased glenohumeral external rotation and increased superior translation to individuals with shoulder pain and impingement diagnoses. However, relatively few studies have investigated glenohumeral joint angular motion and linear translations in this population. Methods Transcortical bone pins were inserted into the scapula and humerus of 12 asymptomatic and 10 symptomatic participants for direct bone-fixed tracking using electromagnetic sensors. Glenohumeral joint angular positions and linear translations were calculated during active shoulder flexion, abduction, and scapular plane abduction. Results Differences between groups in angular positions were limited to glenohumeral elevation coinciding with a reduction in scapulothoracic upward rotation. Symptomatic participants demonstrated 1.4 mm more anterior glenohumeral translation between 90 and 120° shoulder flexion and an average of 1 mm more inferior glenohumeral translation throughout shoulder abduction. Conclusion Differences in glenohumeral kinematics exist between symptomatic and asymptomatic individuals. The clinical implications of these differences are not yet understood and more research is needed to understand the relationship between abnormal kinematics, shoulder pain, and pathoanatomy. J Orthop Sports Phys Ther, Epub 7 August 2014. doi:10.2519/jospt.2014.5556.
    Journal of Orthopaedic and Sports Physical Therapy 08/2014; 44(9):1-42. DOI:10.2519/jospt.2014.5556 · 2.38 Impact Factor