Article

Heterogeneity of human peripheral blood eosinophil-type colonies: evidence for a common basophil-eosinophil progenitor.

Blood (Impact Factor: 9.78). 09/1985; 66(2):312-8.
Source: PubMed

ABSTRACT We have recently shown that a proportion of previously designated human eosinophil "(Eo)-type" colonies in methylcellulose contain basophils and histamine (Denburg et al Blood 61:775, 1983). In the present studies, individual Eo-type colonies have been analyzed by cell morphology as well as by biochemical assays for histamine, Charcot-Leyden crystal protein (CLC), and eosinophil granule major basic protein (MBP). Clonal origin of single Eo-type colonies was confirmed by G6PD isoenzyme analysis. Morphological observations of such colonies revealed the existence of two distinct colony types: (1) Eo type containing 100% basophils and (2) Eo type containing mixtures of basophils and eosinophils, including cells with mixed basophil-eosinophil granulation. Histamine was not detected in pure, mature peripheral blood eosinophils. Immunofluorescent studies demonstrated bright staining for CLC and MBP in 95% +/- 3% of cells in Eo-type colonies but only in 5% +/- 4% of cells in GM-type colonies. Radioimmunoassay for MBP was positive in 5/9 Eo-type and 0/10 neutrophil-macrophage ("GM-type") colonies, with a mean level (nanogram/colony) of 11.6 +/- 4.2 per Eo-type colony; four of the latter colonies were doubly positive for both histamine and MBP. These and previous findings point out the morphological and biochemical heterogeneity of peripheral blood Eo-type colonies and provide direct evidence for the existence of a common, circulating basophil-eosinophil progenitor.

0 Bookmarks
 · 
105 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An important immunopathological hallmark of allergic disease is tissue eosinophilic and basophilic inflammation, a phenomenon which originates from hemopoietic progenitors (HP). The fate of HP is determined by local inflammatory cytokines that permit “in situ hemopoiesis,” which leads to the accumulation of eosinophils and basophils (Eo/B). Given that recent evidence supports a critical immunomodulatory role for thymic stromal lymphopoietin (TSLP) in allergic inflammation, as well as TSLP effects on CD34+ progenitor cytokine and chemokine secretion, we investigated the role of TSLP in mediating eosinophilo- and basophilopoiesis, the mechanisms involved, and the association of these processes with atopic sensitisation. In the studies presented herein, we demonstrate a direct role for TSLP in Eo/B differentiation from human peripheral blood CD34+ cells. In the presence of IL-3, TSLP significantly promoted the formation of Eo/B colony forming units (CFU) (including both eosinophils and basophils) from human HP (HHP), which was dependent on TSLP–TSLPR interactions. IL-3/TSLP-stimulated HHP actively secreted an array of cytokines/chemokines, key among which was TNFα, which, together with IL-3, enhanced surface expression of TSLPR. Moreover, pre-stimulation of HHP with IL-3/TNFα further promoted TSLP-dependent Eo/B CFU formation. HHP isolated from atopic individuals were functionally and phenotypically more responsive to TSLP than those from nonatopic individuals. This is the first study to demonstrate enhanced TSLP-mediated hemopoiesis ex vivo in relation to clinical atopic status. The capacity of HHP to participate in TSLP-driven allergic inflammation points to the potential importance of “in situ hemopoiesis” in allergic inflammation initiated at the epithelial surface.
    Immunity, Inflammation and Disease. 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: . Four patients representing a spectrum of haematological malignancies are reported. Two patients had Philadelphia chromosome negative myeloproliferative disorders, one had acute lymphoblastic leukaemia and one had eosinophilic leukaemia. In each case eosinophilia was present and demonstrated to be part of the malignancy by the association of clonally abnormal metaphases with eosinophil granules. Abnormalities involving the short arm of chromosome 12 (12p 13) were a constant feature in all four cases and therefore a nonrandom association between this chromosome region and malignant eosinophil proliferation is proposed.
    British Journal of Haematology 09/1987; 67(1). · 4.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Basophils and mast cells have long been known to play critical roles in allergic disease and host defense against parasitic infections. Recent recognition of these effector cells in immune regulations, host defense against bacteria and virus, and autoimmune diseases entices increased interest in studying these cells. However, origin and molecular regulation of basophil and mast cell differentiation remain incompletely understood. In this review, we focus on recent advances of the understanding the origin and molecular regulation of mouse basophil and mast cell development. We also summarize progress in the understanding of the origin and molecular regulation of human basophil and mast cell development. A more complete understanding of molecular regulation of basophils and mast cells will lead to the development of interventions that are more effective in achieving long-term success.
    Current Allergy and Asthma Reports 09/2014; 14(9):457. · 2.75 Impact Factor

Full-text (2 Sources)

Download
59 Downloads
Available from
May 17, 2014