Article

The cell surface molecule recognized by the erythrocyte receptor of T lymphocytes. Identification and partial characterization using a monoclonal antibody.

Journal of Experimental Medicine (Impact Factor: 13.21). 10/1985; 162(3):890-901. DOI: 10.1084/jem.162.3.890
Source: PubMed

ABSTRACT A monoclonal antibody (mAb) to sheep red blood cells (SRBC), termed L180/1, is described that completely blocks rosette formation between SRBC and human or sheep T lymphocytes. L180/1 precipitated a minor glycoprotein of about approximately 42,000 mol wt from surface-labeled SRBC. This glycoprotein was partially affinity purified and found to block E rosette formation and to compete with anti-T11 mAb for the E receptor. The molecule detected by mAb L180/1 thus appears to be recognized by the E receptor and was given the preliminary name, T11 target structure (T11TS). Since the mAb to sheep T11TS blocks the binding of SRBC to both human and sheep T cells, and mAb to T11 blocks the binding of red cells from human and sheep to the human E receptor, we concluded that analogous receptor-ligand (T11-T11TS) systems exist in man and sheep that are crossreactive over the species barrier. The possibility is discussed that the E receptor, which is known to be involved in T cell activation, and T11TS function as complementary cell interaction molecules in T cell responses.

0 Bookmarks
 · 
169 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A cDNA encoding a receptor tyrosine kinase (RTK) was previously cloned and expressed from the marine sponge (Porifera) Geodia cydonium. In addition to the two intracellular regions characteristic for RTKs, two immunoglobulin (Ig)-like domains are found in the extracellular part of the sponge RTK. In the present study it is shown that no further Ig-like domain is present in the upstream region of the cDNA as well as of the gene hitherto known from the sponge RTK. Two different full-length cDNAs have been isolated and characterized in the present study, which possess two Ig-like domains, one transmembrane segment, and only a short intracellular part, without a TK domain. The two deduced polypeptides were preliminarily termed sponge adhesion molecules (SAM). The longer form of the SAM, GCSAML, encodes a deduced aa sequence, GCSAML, which comprises in the open reading frame 505 amino acids (aa) and has a calculated Mr of 53911. The short form, GCSAMS, has 313 aa residues and an Mr of 33987. The two Ig-like domains in GCSAML and GCSAMS are highly similar to the corresponding Ig-like domains in the RTKs from G. cydonium; the substitutions on both the aa and nt level are restricted to a few sites. Phylogenetic analyses revealed that the Ig-like domain 1 is similar to the human Ig lambda chain variable region, while the Ig-like domain 2 is related more closely to the human Ig heavy chain variable region. Transplantation experiments (autografting) were performed to demonstrate that the level of expression of the two new genes, GCSAML and GCSAMS, is upregulated during the self/self fusion process. Immunohistochemical analyses using antibodies raised against the two Ig-like domains demonstrate a strong expression in the fusion zone between graft and host. This finding has been supported by northern blotting experiments that revealed that especially GCSAML is strongly upregulated after autografting (up to 12-fold); the expression of GCSAMS reaches a value of 5-fold if compared with the controls. The results presented here demonstrate that the expression of the new molecules described, comprising two Ig-like domains, is upregulated during the process of autograft fusion.
    Immunogenetics 09/1999; 49(9):751-63. · 2.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Macrophages from maedi-visna virus (MVV) infected sheep have been shown to have an activated phenotype from sites of lesions in vivo. Here we have looked at the direct effect of virus infection on macrophage phenotype and activity in vitro by flow cytometry. There was no significant difference in the expression of several surface markers (CD4, CD8, MHC Class I, MHC Class II, lymphocyte function associated antigen(LFA)-1 and LFA-3) on monocyte-derived macrophages (MDM) by 5 days post MVV infection. In contrast the phagocytic activity of MVV-infected MDM for the yeast Candida utilis and erythrocytes was decreased by 5 days p.i. although the surface binding of erythrocytes was not affected. Interestingly, an activated phenotype was seen on alveolar macrophages (AM) from sheep with maedi (surface expression of MHC Class I, Class II and LFA-1 was increased), but there was no difference in the binding and phagocytosis of erythrocytes by these cells. However the binding and phagocytosis of the bacterium, Pasteurella hemolytica was increased with AM from MVV-infected sheep without lesions. Similarly there was no significant difference in the phagocytic and erythrocyte rosetting activity between fresh monocytes from MVV-infected and uninfected control sheep. Therefore the phenotype of macrophages taken from sites of lesions caused by MVV does not correspond to a direct effect by the virus on these cells or to particular activities of the macrophages.
    Veterinary Immunology and Immunopathology 06/1996; 51(1-2):113-26. · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The crucial role of angiogenesis in malignant glioma progression makes it a potential target of therapeutic intervention in glioma. Previous studies from our lab showed that sheep erythrocyte membrane glycopeptide T11-target structure (T11TS) has potent anti-neoplastic and immune stimulatory effects in rodent glioma model. In the present study we investigated the anti-angiogenic potential of T11TS and deciphered the underlying molecular mechanism of its anti-angiogenic action in malignant glioma. Vascular endothelial growth factor (VEGF) signaling is crucial for initiating tumor angiogenic responses. The present preclinical study was designed to evaluate the effect of T11TS therapy on VEGF and VEGFR-2 expression in glioma associated brain endothelial cells and to determine the effects of in vivo T11TS administration on expression of PTEN and downstream pro-survival PI3K/Akt/eNOS pathway proteins in glioma associated brain endothelial cells. T11TS therapy in rodent glioma model significantly downregulated expression of VEGF along with its receptor VEGFR-2 and inhibited the expression of pro-survival PI3K/Akt/eNOS proteins in glioma associated brain endothelial cells. Furthermore, T11TS therapy in glioma induced rats significantly upregulated brain endothelial cell PTEN expression, inhibited eNOS phosphorylation and production of nitric oxide in glioma associated brain endothelial cells. Taken together our findings suggest that T11TS can be introduced as an effective angiogenesis inhibitor in human glioma as T11TS targets multiple levels of angiogenic signaling cascade impeding glioma neovascularisation.
    Journal of Neuro-Oncology 03/2013; · 3.12 Impact Factor

Full-text (4 Sources)

View
45 Downloads
Available from
May 28, 2014