Article

Understanding Romanowsky staining. I: The Romanowsky-Giemsa effect in blood smears.

Histochemistry 01/1987; 86(3):331-6.
Source: PubMed

ABSTRACT Normal blood smears were stained by the standardised azure B-eosin Y Romanowsky procedure recently introduced by the ICSH, and the classical picture resulted. The effects of varying the times and temperature of staining, the composition of the solvent (buffer concentration, methanol content, & pH), the concentration of the dyes, and the mode of fixation were studied. The results are best understood in terms of the following staining mechanism. Initial colouration involves simple acid and basic dyeing. Eosin yields red erythrocytes and eosinophil granules. Azure B very rapidly gives rise to blue stained chromatin, neutrophil specific granules, platelets and ribosome-rich cytoplasms; also to violet basophil granules. Subsequently the azure B in certain structures combines with eosin to give purple azure B-eosin complexes, leaving other structures with their initial colours. The selectivity of complex formation is controlled by rate of entry of eosin into azure B stained structures. Only faster staining structures (i.e. chromatin, neutrophil specific granules, and platelets) permit formation of the purple complex in the standard method. This staining mechanism illuminates scientific problems (e.g. the nature of 'toxic' granules) and assists technical trouble-shooting (e.g. why nuclei sometimes stain blue, not purple).

114 Followers
 · 
3,288 Views
  • Source
    • "First, the cation dye (methylene blue derivative Azure B) and anion dye (Eosin Y) are in the same solution. Second, the purple (metachromatic) stain of the nuclei is believed to be due to the formation of a stain-stain attraction of the methylene blue derivative Azure B and Eosin Y complex to the cell chromatin.[1920] Some destaining was evident during the last step of rehydration (70% ethanol). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Protocols for immunocytochemical staining (ICC) and in situ hybridization (ISH) of air-dried Diff-Quick or May-Grünwald Giemsa (MGG)-stained smears have been difficult to establish. An increasing need to be able to use prestained slides for ICC and ISH in specific cases led to this study, aiming at finding a robust protocol for both methods. The material consisted of MGG- and Diff-Quick-stained smears. After diagnosis, one to two diagnostic smears were stored in the department. Any additional smear(s) containing diagnostic material were used for this study. The majority were fine needle aspirates (FNAC) from the breast, comprising materials from fibroadenomas, fibrocystic disease, and carcinomas. A few were metastatic lesions (carcinomas and malignant melanomas). There were 64 prestained smears. Ten smears were Diff-Quick stained, and 54 were MGG stained. The antibodies used for testing ICC were Ki-67, ER, and PgR, CK MNF116 (pancytokeratin) and E-cadherin. HER-2 Dual SISH was used to test ISH. Citrate, TRS, and TE buffers at pH6 and pH9 were tested, as well as, different heating times, microwave powers and antibody concentrations. The ICC was done on the Dako Autostainer (Dako(®), Glostrup, Denmark), and HER-2 Dual SISH was done on the Ventana XT-machine (Ventana / Roche(®) , Strasbourg, France). Optimal results were obtained with the TE buffer at pH 9, for both ICC and ISH. Antibody concentrations generally had to be higher than in the immunohistochemistry (IHC). The optimal microwave heat treatment included an initial high power boiling followed by low power boiling. No post fixation was necessary for ICC, whereas, 20 minutes post fixation in formalin (4%) was necessary for ISH. Microwave heat treatment, with initial boiling at high power followed by boiling at low power and TE buffer at pH 9 were the key steps in the procedure. Antibody concentrations has to be adapted for each ICC marker. Post fixation in formalin is necessary for ISH.
    CytoJournal 03/2012; 9(1):8. DOI:10.4103/1742-6413.94518
  • [Show abstract] [Hide abstract]
    ABSTRACT: Normal blood smears were stained by the standardised azure B-eosin Y Romanowsky procedure recently introduced by the ICSH, and the classical picture resulted. The effects of varying the times and temperature of staining, the composition of the solvent (buffer concentration, methanol content, & pH), the concentration of the dyes, and the mode of fixation were studied. The results are best understood in terms of the following staining mechanism. Initial colouration involves simple acid and basic dyeing. Eosin yields red erythrocytes and eosinophil granules. Azure B very rapidly gives rise to blue stained chromatin, neutrophil specific granules, platelets and ribosome-rich cytoplasms; also to violet basophil granules. Subsequently the azure B in certain structures combines with eosin to give purple azure B-eosin complexes, leaving other structures with their initial colours. The selectivity of complex formation is controlled by rate of entry of eosin into azure B stained structures. Only faster staining structures (i.e. chromatin, neutrophil specific granules, and platelets) permit formation of the purple complex in the standard method. This staining mechanism illuminates scientific problems (e.g. the nature of toxic granules) and assists technical trouble-shooting (e.g. why nuclei sometimes stain blue, not purple).
    Histochemie 04/1987; 86(3):331-336. DOI:10.1007/BF00490267 · 2.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bone marrow smears were made and fixed in methanol or formaldehyde. Marrow sections of various thicknesses were also prepared from formaldehyde fixed marrows embedded in paraffin or plastic (glycol methacrylate). The different smears and sections were then stained by a Romanowsky--Giemsa procedure. Some specimens were stained using a standard microwave-stimulated method previously used diagnostically. The effects of technical variations were studied, including degree of microwave irradiation and the staining time. Comparisons of the resulting staining outcomes showed that microwave stimulated Romanowsky--Giemsa staining of plastic sections is a rate controlled process. Unusual aspects of the staining pattern of plastic sections (namely the purple basophilic cytoplasms and nucleoli, and blue chromatin) are due to microwave stimulation and formaldehyde fixation respectively.
    The Histochemical Journal 05/1988; 20(6-7):329-34. DOI:10.1007/BF01002725
Show more

Questions & Answers about this publication