In situ localization of HuHF serine protease mRNA and cytotoxic cell-associated antigens in human dermatoses. A novel method for the detection of cytotoxic cells in human tissues

Department of Dermatology, Stanford University School of Medicine, California.
American Journal Of Pathology (Impact Factor: 4.59). 12/1988; 133(2):218-25.
Source: PubMed


Human Hanukah Factor (HuHF) is a trypsinlike serine protease associated with cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. Employing a radiolabeled RNA probe for the HuHF gene, cells containing HuHF mRNA in situ were detected in skin lesions from patients with a variety of reactive and neoplastic dermatoses including positive allergic contact dermatitis patch tests, lichen planus, erythrodermic psoriasis, Sezary syndrome, and poikilodermatous mycosis fungoides. The results were correlated with in situ studies of CTL/NK subsets as defined immunohistologically by a panel of monoclonal antibodies applied to sermiserial sections of the same tissue blocks used for the HuHF hybridizations. The results suggest that cytotoxic cells are present in each of these dermatoses, that they may be situated within either the epidermis or the dermis, and that they belong predominantly to the CTL subset because Leu-7+ or CD16+ cells (NK cells) were typically rare or absent. A variable proportion of cells expressed Leu-19 antigen (a marker for non-MHC-restricted cytotoxic cells); however, its rarity in several cases suggests that most of the HuHF+ cells identified in them belonged to the MHC-restricted, Leu-19- CTL subset. It is concluded that the correlation of molecular biologic and immunohistologic data will be a useful method for the further characterization of cytotoxic cell subsets in human dermatoses.

3 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CTL and NK cells cultured in vitro have been shown to contain a cytolytic pore-forming protein (PFP/perforin/cytolysin). To date, it has not been determined whether perforin is expressed by CTL that have been primed in vivo. Here, we have infected mice with two strains of lymphocytic choriomeningitis virus (LCMV), one of which mainly produces choriomeningitis and, the other, hepatitis. Brain and liver cryostat sections obtained from LCMV-infected mice were stained for various lymphocyte markers, including perforin. We were able to detect a large accumulation of perforin antigen in CD8+/Thy-1+/asialo GM1+/CD4- lymphocytes, which in fact represent the main infiltrating cell type found in brain and liver sections obtained during the late acute stage of LCMV infection. Perforin was also detected in a smaller population of CD8-/asialo GM1+/NK 1.1+/F480- cells, presumably corresponding to NK cells. Perforin-positive cells were found to have the morphology of blasts or large granular lymphocytes (LGL). These observations, together with in vitro studies performed in the past, indicate that perforin may be associated exclusively with LGL-like CTL blasts and NK cells. Our results demonstrate for the first time the presence of perforin in CTL that have been primed in vivo and suggest that perforin-positive CTL may be directly involved in producing the immunopathology associated with the LCMV infection.
    Journal of Experimental Medicine 07/1989; 169(6):2159-71. · 12.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human granzyme B antigen is expressed in cytoplasmic granules of activated cytotoxic T lymphocytes and natural killer cells. Recombinant granzyme B was generated using a prokaryotic expression vector under the control of T7 transcription and translation signals. The 25-kd recombinant protein (granzyme B) was used to develop a rabbit polyclonal antiserum. Purified anti-granzyme B antibodies were used to detect the antigen expression in cytotoxic cells in human tissues. Using the avidin-biotin-complex peroxidase technique, formalin-fixed, paraffin-embedded tissue sections from patients with acute mild or moderate allograft cardiac rejection were stained. A constant cytoplasmic staining of the lymphocytic allograft infiltrate was observed. These results provide a basis for using the anti-granzyme B antibodies for detection of cytotoxic cells in human tissues. The detection and quantitative analysis of the granzyme-associated cytotoxic cells may help to evaluate the significance of these functionally distinct cytotoxic cells in human tissues associated with increased expression of cytoplasmic granule effector molecules.
    American Journal Of Pathology 06/1991; 138(5):1069-75. · 4.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To define further the characteristics of CD8+ cells in skin lesions of CD3+ CD4+ mycosis fungoides (MF), the authors used single- and double-label immunohistologic techniques and in situ hybridization to detect antigens and transcripts associated with certain types of cytotoxic or suppressor function. The cytotoxic markers included CD16, CD56, CD57, and an anti-sense probe for human Hanukah factor (HuHf) mRNA. Analysis of 23 cases demonstrated that lesional CD8+ cells were CD3+ T cells that generally lacked expression of any of the cytotoxic markers studied. Analysis of another 10 cases confirmed the CD3+ T-cell lineage of lesional CD8+ cells and demonstrated that these cells also lacked expression of the suppressor-associated marker, CD11b. In aggregate, these results indicate that most CD8+ cells in CD3+ CD4+ MF skin lesions are of T-cell rather than NK-cell differentiation. Their overall phenotype suggests that they may be major histocompatibility complex (MHC)-restricted cytotoxic T cells lacking appreciable levels of HuHF serine protease. Because the induction of CD8+ suppressor T cells is mediated by CD4+ T cells expressing the CD45RA+ RO- phenotype, CD45 epitope expression was studied in 15 MF cases. The vast majority (13/15) contained CD3+ CD4+ tumor cells that were CD45+ RA- RB+ RO+ 2B11+. This phenotype is consistent with memory T cells rather than suppressor-inducer T cells, and correlates with the paucity of phenotypically defined suppressor T cells in CD3+ CD4+ MF skin lesions.
    American Journal Of Pathology 07/1991; 138(6):1545-52. · 4.59 Impact Factor
Show more


3 Reads
Available from