Human gamma delta+ T cells respond to mycobacterial heat-shock protein.

Laboratory of Infectious Diseases, Dana-Farber Cancer Institute, Boston, Massachusetts 02115.
Nature (Impact Factor: 42.35). 08/1989; 340(6231):309-12. DOI: 10.1038/340309a0
Source: PubMed

ABSTRACT Most T cells recognize antigen through the T-cell antigen receptor (TCR)alpha beta-CD3 complex on the T-cell surface. A small percentage of T cells, however, do not express alpha beta but a second type of TCR complex designated gamma delta (ref. 2). Unlike alpha beta+ lymphocytes, gamma delta+ lymphocytes do not generally express CD4 or CD8 molecules, and the nature of antigen recognition by these cells is unknown. To study antigen recognition by gamma delta+ lymphocytes we raised a gamma delta+ alpha beta- -CD4-CD8- line from an individual immune to PPD (purified protein derivative). This line showed a specific proliferative response to PPD and to a recombinant mycobacterial heat-shock protein (HSP) of relative molecular mass 65,000 (65K). The gamma delta+ line was shown to exhibit a major response to HSP in the presence of autologous antigen-presenting cells (APCs). Minor responses occurred, however, with APCs matched for some HLA class I or II antigens, whereas no response occurred with HLA-mismatched APCs. These findings, therefore, document the requirement of HSP-reactive gamma delta+ lymphocytes for histocompatible APCs.

  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanistic requirements of antigen recognition by T cells expressing a γδ TCR has revealed important differences with those of αβ TCR cells and, despite impressive new data generated in the very recent years, they remain poorly understood. Based on the structure of the TCR chains and the tissue distribution, γδ cells are represented in a variety of populations. The major subset of human peripheral blood γδ cells express Vγ9Vδ2 TCR heterodimers and are all stimulated by phosphorylated metabolites (commonly called phosphoantigens). Phosphoantigens are molecules with a very small mass and only stimulate Vγ9Vδ2 cells in the presence of antigen-presenting cells, suggesting a strict requirement for dedicated antigen-presenting molecules. Recent studies have identified butyrophilin (BTN) 3A1 as the molecule necessary to stimulate Vγ9Vδ2 cells. BTN3A1 extracellular, transmembrane, and cytoplasmic domains have different functions, including cognate interaction with the Vγ9Vδ2 TCR, binding of the phosphoantigens, and interaction with cytoplasmic proteins. This review mainly discusses the known molecular mechanisms of BTN3A1-mediated antigen presentation to γδ cells and proposes a model of phosphoantigen presentation, which integrates past and recent studies.
    Frontiers in Immunology 01/2014; 5:679. DOI:10.3389/fimmu.2014.00679
  • Frontiers in Bioscience 01/2004; 9(1-3):2640. DOI:10.2741/1423 · 4.25 Impact Factor