Article

Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1.

Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115.
Nature (Impact Factor: 42.35). 06/1989; 339(6219):61-4. DOI: 10.1038/339061a0
Source: PubMed

ABSTRACT The leukocyte adhesion molecule LFA-1 mediates a wide range of lymphocyte, monocyte, natural killer cell, and granulocyte interactions with other cells in immunity and inflammation. LFA-1 (CD11a/CD18) is a receptor for intercellular adhesion molecule 1 (ICAM-1, CD54), a surface molecule which is constitutively expressed on some tissues and induced on other in inflammation. Induction of ICAM-1 on epithelial cells, endothelial cells and fibroblasts mediates LFA-1-dependent adhesion of lymphocytes. Several lines of evidence have suggested the existence of a second LFA-1 ligand: homotypic adhesion of one cell line was inhibited by a monoclonal antibody to LFA-1, but not by one to ICAM-1; there exists an LFA-1-dependent, ICAM-1-independent pathway of adhesion to endothelial cells; and also, there are some types of target cells in which LFA-1-dependent T-lymphocyte adhesion and lysis are independent of ICAM-1. We have cloned this second ligand, designated ICAM-2, using a novel method for identifying ligands of adhesion molecules. ICAM-2 is an integral membrane protein with two immunoglobulin-like domains, whereas ICAM-1 has five. Remarkably, ICAM-2 is much more closely related to the two most N-terminal domains of ICAM-1 (34% identity) than either ICAM-1 or ICAM-2 is to other members of the immunoglobulin superfamily, demonstrating the existence of a subfamily of immunoglobulin-like ligands that bind the same integrin receptor.

0 Bookmarks
 · 
83 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leptospirosis is a globally distributed bacterial infectious disease caused by pathogenic members of the genus Leptospira. Infection can lead to illness ranging from mild and non-specific to severe, with jaundice, kidney and liver dysfunction, and widespread endothelial damage. The adhesion of pathogenic Leptospira species (spp.), the causative agent of leptospirosis, to host tissue components is necessary for infection and pathogenesis. While it is well-established that extracellular matrix (ECM) components play a role in the interaction of the pathogen with host molecules, we have shown that pathogenic Leptospira interrogans binds to host cells more efficiently than to ECM components. Using in vitro phage display to select for phage clones that bind to EA.hy926 endothelial cells, we identified the putative lipoproteins LIC10508 and LIC13411, and the conserved hypothetical proteins LIC12341 and LIC11574, as candidate L. interrogans sv. Copenhageni st. Fiocruz L1-130 adhesins. Recombinant LIC11574, but not its L. biflexa homologue LBF1629, exhibited dose-dependent binding to both endothelial and epithelial cells. In addition, LIC11574 and LIC13411 bind to VE-cadherin, an endothelial cell receptor for L. interrogans. Extraction of bacteria with the non-ionic detergent Triton X-114 resulted in partitioning of the candidate adhesins to the detergent fraction, a likely indication that these proteins are outer membrane localized. All candidate adhesins were recognized by sera obtained from leptospirosis patients but not by sera from healthy individuals as assessed by western blot. This work has identified bacterial adhesins that are potentially involved in L. interrogans infection of the mammalian host, and through cadherin binding, may contribute to dissemination and vascular damage. Our findings may be of value in leptospirosis control and prevention, with the bacterial adhesins potentially serving as targets for development of diagnostics, therapeutics, and vaccines.
    PLoS Neglected Tropical Diseases 10/2014; 8(10):e3215. · 4.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Infection or sterile inflammation triggers site-specific attraction of leukocytes. Leukocyte recruitment is a process comprising several steps orchestrated by adhesion molecules, chemokines, cytokines and endogenous regulatory molecules. Distinct adhesive interactions between endothelial cells and leukocytes and signaling mechanisms contribute to the temporal and spatial fine-tuning of the leukocyte adhesion cascade. Central players in the leukocyte adhesion cascade include the leukocyte adhesion receptors of the β2-integrin family, such as the αLβ2 and αMβ2 integrins, or of the β1-integrin family, such as the α4β1-integrin. Given the central involvement of leukocyte recruitment in different inflammatory and autoimmune diseases, the leukocyte adhesion cascade in general, and leukocyte integrins in particular, represent key therapeutic targets. In this context, the present review focuses on the role of leukocyte integrins in the leukocyte adhesion cascade. Experimental evidence that has implicated leukocyte integrins as targets in animal models of inflammatory disorders, such as experimental autoimmune encephalomyelitis, psoriasis, inflammatory bone loss and inflammatory bowel disease as well as preclinical and clinical therapeutic applications of antibodies that target leukocyte integrins in various inflammatory disorders are presented. Finally, we review recent findings on endogenous inhibitors that modify leukocyte integrin function, which could emerge as promising therapeutic targets.
    Pharmacology [?] Therapeutics 11/2014; 147. · 7.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The molecular interactions underlying regulation of the immune response take place in a nanoscale gap between T cells and antigen-presenting cells, termed the immunological synapse. If these interactions are regulated appropriately, the host is defended against a wide range of pathogens and deranged host cells. If these interactions are disregulated, the host is susceptible to pathogens or tumor escape at one extreme and autoimmunity at the other. Strategies targeting the synapse have helped to establish immunotherapy as a mainstream element in cancer treatment. This Masters' primer will cover the basics of the immunological synapse and some of the applications to tumor immunology. Cancer Immunol Res; 2(11); 1023-33. ©2014 AACR.
    Cancer immunology research. 11/2014; 2(11):1023-1033.