A geometrical meaning to the electron mass from breakdown of Lorentz invariance

Source: arXiv

ABSTRACT We discuss the problem of the electron mass in the framework of Deformed Special Relativity (DSR), a generalization of Special Relativity based on a deformed Minkowski space (i.e. a four-dimensional space-time with metric coefficients depending on the energy). We show that, by such a formalism, it is possible to derive the value of the electron mass from the space-time geometry via the experimental knowledge of the parameter of local Lorentz invariance breakdown, and of the Minkowskian threshold energy $E_{0,em}$ for the electromagnetic interaction. We put forward the suggestion that mass generation can be related, in DSR, to the possible dependence of mass on the metric background (relativity of mass).

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We illustrate the main features of a new Kaluza-Klein-like scheme (Deformed Relativity in five dimensions). It is based on a five-dimensional Riemannian space in which the four-dimensional space-time metric is deformed (i.e. it depends on the energy) and energy plays the role of the fifth dimension. We review the solutions of the five-dimensional Einstein equations in vacuum and the geodetic equations in some cases of physical relevance. The Killing symmetries of the theory for the energy-dependent metrics corresponding to the four fundamental interactions (electromagnetic, weak, strong and gravitational) are discussed for the first time. Possible developments of the formalism are also briefly outlined.

Full-text (2 Sources)

Available from
May 26, 2014