Article

DNA mismatch correction in a defined system.

Department of Biochemistry, Duke University Medical Center, Durham, NC 27710.
Science (Impact Factor: 31.48). 08/1989; 245(4914):160-4. DOI: 10.1126/science.2665076
Source: PubMed

ABSTRACT DNA mismatch correction is a strand-specific process involving recognition of noncomplementary Watson-Crick nucleotide pairs and participation of widely separated DNA sites. The Escherichia coli methyl-directed reaction has been reconstituted in a purified system consisting of MutH, MutL, and MutS proteins, DNA helicase II, single-strand DNA binding protein, DNA polymerase III holoenzyme, exonuclease I, DNA ligase, along with ATP (adenosine triphosphate), and the four deoxynucleoside triphosphates. This set of proteins can process seven of the eight base-base mismatches in a strand-specific reaction that is directed by the state of methylation of a single d(GATC) sequence located 1 kilobase from the mispair.

0 Bookmarks
 · 
80 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The growing volume of sequence data confirm more and more candidate single nucleotide polymorphisms (SNPs), which are believed to reveal the genetic basis of individual susceptibility to disease and the diverse responses to treatment. There is therefore an urgent demand for developing the sensitive, rapid, easy-to-use, and cost-effective method to identify SNPs. During the last two decades, biosensing techniques have been developed by integrating the unique specificity of biological reactions and the high sensitivity of physical sensors, which provided significant advantages for the detection of SNPs. In this feature article, we focused attention on the strategies of SNP genotyping based on biosensors, including nucleic acid analogs, surface ligation reaction, single base extension, mismatch binding protein, molecular beacon, rolling circle amplification, and strand-displacement amplification. In addition, the perspectives on their advantages, current limitations, and future trends were also discussed. The biosensing technique would provide a promising alternative for the detection of SNPs, and pave the way for the diagnosis of genetic diseases and the design of appropriate treatments.
    Biosensors & Bioelectronics 11/2014; 66. DOI:10.1016/j.bios.2014.11.041 · 6.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: DNA mismatch repair functions to correct replication errors in newly synthesized DNA and to prevent recombination between related, but not identical (homeologous), DNA sequences. The mechanism of mismatch repair is best understood in Escherichia coli and is the main focus of this review. The early genetic studies of mismatch repair are described as a basis for the subsequent biochemical characterization of the system. The effects of mismatch repair on homologous and homeologous recombination are described. The relationship of mismatch repair to cell toxicity induced by various drugs is included. The VSP (Very Short Patch) repair system is described in detail.
    08/2012; 2012(4). DOI:10.1128/ecosalplus.7.2.5
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract In all living cells, DNA is the storage medium for genetic information. Being quite stable, DNA is well-suited for its role in storage and propagation of information, but RNA is also covalently included in DNA through various mechanisms. Recent studies also demonstrate useful aspects of including ribonucleotides in the genome during repair. Therefore, our understanding of the consequences of RNA inclusion into bacterial genomic DNA is just beginning, but with its high frequency of occurrence the consequences and potential benefits are likely to be numerous and diverse. In this review, we discuss the processes that cause ribonucleotide inclusion in genomic DNA, the pathways important for ribonucleotide removal and the consequences that arise should ribonucleotides remain nested in genomic DNA.
    Critical Reviews in Biochemistry and Molecular Biology 11/2014; DOI:10.3109/10409238.2014.981647 · 5.81 Impact Factor