Article

DNA mismatch correction in a defined system.

Department of Biochemistry, Duke University Medical Center, Durham, NC 27710.
Science (Impact Factor: 31.48). 08/1989; 245(4914):160-4.
Source: PubMed

ABSTRACT DNA mismatch correction is a strand-specific process involving recognition of noncomplementary Watson-Crick nucleotide pairs and participation of widely separated DNA sites. The Escherichia coli methyl-directed reaction has been reconstituted in a purified system consisting of MutH, MutL, and MutS proteins, DNA helicase II, single-strand DNA binding protein, DNA polymerase III holoenzyme, exonuclease I, DNA ligase, along with ATP (adenosine triphosphate), and the four deoxynucleoside triphosphates. This set of proteins can process seven of the eight base-base mismatches in a strand-specific reaction that is directed by the state of methylation of a single d(GATC) sequence located 1 kilobase from the mispair.

0 Bookmarks
 · 
72 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: DNA mismatch repair functions to correct replication errors in newly synthesized DNA and to prevent recombination between related, but not identical (homeologous), DNA sequences. The mechanism of mismatch repair is best understood in Escherichia coli and is the main focus of this review. The early genetic studies of mismatch repair are described as a basis for the subsequent biochemical characterization of the system. The effects of mismatch repair on homologous and homeologous recombination are described. The relationship of mismatch repair to cell toxicity induced by various drugs is included. The VSP (Very Short Patch) repair system is described in detail.
    EcoSal Plus. 08/2012; 2012.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA is constantly under attack by a number of both exogenous and endogenous agents that challenge its integrity. Among the mechanisms that have evolved to counteract this deleterious action, mismatch repair (MMR) has specialized in removing DNA biosynthetic errors that occur when replicating the genome. Malfunction or inactivation of this system results in an increase in spontaneous mutability and a strong predisposition to tumor development. Besides this key corrective role, MMR proteins are involved in other pathways of DNA metabolism such as mitotic and meiotic recombination and processing of oxidative damage. Surprisingly, MMR is also required for certain mutagenic processes. The mutagenic MMR has beneficial consequences contributing to the generation of a vast repertoire of antibodies through class switch recombination and somatic hypermutation processes. However, this non-canonical mutagenic MMR also has detrimental effects; it promotes repeat expansions associated with neuromuscular and neurodegenerative diseases and may contribute to cancer/disease-related aberrant mutations and translocations. The reaction responsible for replication error correction has been the most thoroughly studied and it is the subject to numerous reviews. This review describes briefly the biochemistry of MMR and focuses primarily on the non-canonical MMR activities described in mammals as well as emerging research implicating interplay of MMR and chromatin.
    Frontiers in Genetics 08/2014; 5:287.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract In all living cells, DNA is the storage medium for genetic information. Being quite stable, DNA is well-suited for its role in storage and propagation of information, but RNA is also covalently included in DNA through various mechanisms. Recent studies also demonstrate useful aspects of including ribonucleotides in the genome during repair. Therefore, our understanding of the consequences of RNA inclusion into bacterial genomic DNA is just beginning, but with its high frequency of occurrence the consequences and potential benefits are likely to be numerous and diverse. In this review, we discuss the processes that cause ribonucleotide inclusion in genomic DNA, the pathways important for ribonucleotide removal and the consequences that arise should ribonucleotides remain nested in genomic DNA.
    Critical Reviews in Biochemistry and Molecular Biology 11/2014; · 5.81 Impact Factor