The RCC1 protein, a regulator for the onset of chromosome condensation locates in the nucleus and binds to DNA.

Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan.
The Journal of Cell Biology (Impact Factor: 9.69). 11/1989; 109(4 Pt 1):1389-97.
Source: PubMed

ABSTRACT The RCC1 gene, a regulator for the onset of chromosome condensation was found to encode a protein with a molecular mass of 45 kD, determined using the antibody against the synthetic peptides prepared according to the amino acid sequence of the putative RCC1 protein. The p45 located in the nuclei was released from the isolated nuclei, either by DNase I digestion or by treatment with 0.3 M NaCl. Consistently, p45 bound to the DNA-cellulose column was eluted with 0.3 M NaCl. After sequential treatment with DNase I and 2 M NaCl, almost all of the RCC1 protein were released from the nuclei. Thus, RCC1 protein locates on the chromatin and is not a component of the nuclear matrix. In mitotic cells, p45 is dispersed into the cytoplasm. Presumably, RCC1 protein plays a role in regulating the onset of chromosome condensation, at the level of transcription or of mRNA maturation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Specific and efficient recognition of import cargoes is essential to ensure nucleocytoplasmic transport. To this end, the prototypical karyopherin importin β associates with import cargoes directly or, more commonly, through import adaptors, such as importin α and snurportin. Adaptor proteins bind the nuclear localization sequence (NLS) of import cargoes while recruiting importin β via an N-terminal importin β binding (IBB) domain. The use of adaptors greatly expands and amplifies the repertoire of cellular cargoes that importin β can efficiently import into the cell nucleus and allows for fine regulation of nuclear import. Accordingly, the IBB domain is a dedicated NLS, unique to adaptor proteins that functions as a molecular liaison between importin β and import cargoes. This review provides an overview of the molecular role played by the IBB domain in orchestrating nucleocytoplasmic transport. Recent work has determined that the IBB domain has specialized functions at every step of the import and export pathway. Unexpectedly, this stretch of ~40 amino acids plays an essential role in regulating processes such as formation of the import complex, docking and translocation through the nuclear pore complex (NPC), release of import cargoes into the cell nucleus and finally recycling of import adaptors and importin β into the cytoplasm. Thus, the IBB domain is a master regulator of nucleocytoplasmic transport, whose complex molecular function is only recently beginning to emerge. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.
    Biochimica et Biophysica Acta 10/2010; 1813(9):1578-92. DOI:10.1016/j.bbamcr.2010.10.012 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The production of RanGTP around chromosomes is crucial for spindle microtubule assembly in mitosis. Previous work has shown that hepatoma up-regulated protein (HURP) is a Ran target, required for microtubule stabilization and spindle organization. Here we report a detailed analysis of HURP function in Xenopus laevis mitotic egg extracts. HURP depletion severely impairs bipolar spindle assembly around chromosomes: the few spindles that do form show a significant decrease in microtubule density at the spindle midzone. HURP depletion does not interfere with microtubule growth from purified centrosomes, but completely abolishes microtubule assembly induced by chromatin beads or RanGTP. Simultaneous depletion of the microtubule destabilizer MCAK with HURP does not rescue the phenotype, demonstrating that the effect of HURP is not to antagonize the destabilization activity of MCAK. Although the phenotype of HURP depletion closely resembles that reported for TPX2 depletion, we find no evidence that TPX2 and HURP physically interact or that they influence each other in their effects on spindle microtubules. Our data indicate that HURP and TPX2 have nonredundant functions essential for chromatin-induced microtubule assembly.
    Molecular biology of the cell 10/2008; 19(11):4900-8. DOI:10.1091/mbc.E08-06-0624 · 5.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Regulator of Chromosome Condensation 1 (RCC1) was identified over 20 years ago as a critical cell cycle regulator. By analyzing its amino acid sequence, RCC1 was found to consist of seven homologous repeats of 51-68 amino acid residues, which were later shown to adopt a seven-bladed beta-propeller fold. Since the initial identification of RCC1, a number of proteins have been discovered that contain one or more RCC1-like domains (RLDs). As we show here, these RCC1 superfamily proteins can be subdivided in five subgroups based on structural criteria. In recent years, a number of studies have been published regarding the functions of RCC1 superfamily proteins. From these studies, the emerging picture is that the RLD is a versatile domain which may perform many different functions, including guanine nucleotide exchange on small GTP-binding proteins, enzyme inhibition or interaction with proteins and lipids. Here, we review the available structural and functional data on RCC1 superfamily members, paying special attention to the human proteins and their involvement in disease.
    Biochimica et Biophysica Acta 09/2008; 1783(8):1467-79. DOI:10.1016/j.bbamcr.2008.03.015 · 4.66 Impact Factor

Preview (2 Sources)

1 Download
Available from