The RCC1 protein, a regulator for the onset of chromosome condensation locates in the nucleus and binds to DNA

Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan.
The Journal of Cell Biology (Impact Factor: 9.83). 11/1989; 109(4 Pt 1):1389-97.
Source: PubMed


The RCC1 gene, a regulator for the onset of chromosome condensation was found to encode a protein with a molecular mass of 45 kD, determined using the antibody against the synthetic peptides prepared according to the amino acid sequence of the putative RCC1 protein. The p45 located in the nuclei was released from the isolated nuclei, either by DNase I digestion or by treatment with 0.3 M NaCl. Consistently, p45 bound to the DNA-cellulose column was eluted with 0.3 M NaCl. After sequential treatment with DNase I and 2 M NaCl, almost all of the RCC1 protein were released from the nuclei. Thus, RCC1 protein locates on the chromatin and is not a component of the nuclear matrix. In mitotic cells, p45 is dispersed into the cytoplasm. Presumably, RCC1 protein plays a role in regulating the onset of chromosome condensation, at the level of transcription or of mRNA maturation.

3 Reads
  • Source
    • "For the pulse-chase labeling experiment, Geminin was labeled with [35S]methionine, immunoprecipitated and detected by means of autoradiography. The half-life was estimated with the least-squares method [37]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Hoxb4, a 3'-located Hox gene, enhances hematopoietic stem cell (HSC) activity, while a subset of 5'-located Hox genes is involved in hematopoiesis and leukemogenesis, and some of them are common translocation partners for Nucleoporin 98 (Nup98) in patients with leukemia. Although these Hox gene derivatives are believed to act as transcription regulators, the molecular involvement of the Hox gene derivatives in hematopoiesis and leukemogenesis remains largely elusive. Since we previously showed that Hoxb4 forms a complex with a Roc1-Ddb1-Cul4a ubiquitin ligase core component and functions as an E3 ubiquitin ligase activator for Geminin, we here examined the E3 ubiquitin ligase activities of the 5'-located Hox genes, Hoxa9 and Hoxc13, and Nup98-Hoxa9. Hoxa9 formed a similar complex with the Roc1-Ddb1-Cul4a component to induce ubiquitination of Geminin, but the others did not. Retroviral transduction-mediated overexpression or siRNA-mediated knock-down of Hoxa9 respectively down-regulated or up-regulated Geminin in hematopoietic cells. And Hoxa9 transduction-induced repopulating and clonogenic activities were suppressed by Geminin supertransduction. These findings suggest that Hoxa9 and Hoxb4 differ from Hoxc13 and Nup98-Hoxa9 in their molecular role in hematopoiesis, and that Hoxa9 induces the activity of HSCs and hematopoietic progenitors at least in part through direct down-regulation of Geminin.
    PLoS ONE 01/2013; 8(1):e53161. DOI:10.1371/journal.pone.0053161 · 3.23 Impact Factor
  • Source
    • "This GTPase exists in different nucleotide-bound states across the nuclear envelope. The nuclear population of Ran is predominately GTP-bound, whereas the cytoplasmic pool of Ran is GDP-bound due to the sequestering of its RanGEF (named RCC1) and RanGAP to the nucleus and cytoplasm, respectively [12,13]. The high concentration of Ran-GTP found in the nucleus is needed to dissociate incoming import complexes, and also to assemble outgoing export complexes. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Phosphorylation is the most common and pleiotropic modification in biology, which plays a vital role in regulating and finely tuning a multitude of biological pathways. Transport across the nuclear envelope is also an essential cellular function and is intimately linked to many degeneration processes that lead to disease. It is therefore not surprising that phosphorylation of cargos trafficking between the cytoplasm and nucleus is emerging as an important step to regulate nuclear availability, which directly affects gene expression, cell growth and proliferation. However, the literature on phosphorylation of nucleocytoplasmic trafficking cargos is often confusing. Phosphorylation, and its mirror process dephosphorylation, has been shown to have opposite and often contradictory effects on the ability of cargos to be transported across the nuclear envelope. Without a clear connection between attachment of a phosphate moiety and biological response, it is difficult to fully understand and predict how phosphorylation regulates nucleocytoplasmic trafficking. In this review, we will recapitulate clue findings in the field and provide some general rules on how reversible phosphorylation can affect the nuclear-cytoplasmic localization of substrates. This is only now beginning to emerge as a key regulatory step in biology.
    Cell Communication and Signaling 12/2010; 8(1):32. DOI:10.1186/1478-811X-8-32 · 3.38 Impact Factor
  • Source
    • "Ran exists in different nucleotide bound conformational states across the nuclear envelope where nuclear Ran is predominately GTP-bound; the cytoplasmic pool of Ran is mainly GDP-bound. This differential compartmentalization, which is maintained in part by the sequestrating of RanGEF (Ran guanine nucleotide exchange factor, also known as RCC1) and RanGAP (GTPase-activating protein) into the nucleus and cytoplasm, respectively [35] [36], permits importins and exportins to load and unload their cargoes in the appropriate compartment. Whereas RanGTP is responsible for the dissociation of import complexes, it is required for the formation of export complexes [37– 39]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Specific and efficient recognition of import cargoes is essential to ensure nucleocytoplasmic transport. To this end, the prototypical karyopherin importin β associates with import cargoes directly or, more commonly, through import adaptors, such as importin α and snurportin. Adaptor proteins bind the nuclear localization sequence (NLS) of import cargoes while recruiting importin β via an N-terminal importin β binding (IBB) domain. The use of adaptors greatly expands and amplifies the repertoire of cellular cargoes that importin β can efficiently import into the cell nucleus and allows for fine regulation of nuclear import. Accordingly, the IBB domain is a dedicated NLS, unique to adaptor proteins that functions as a molecular liaison between importin β and import cargoes. This review provides an overview of the molecular role played by the IBB domain in orchestrating nucleocytoplasmic transport. Recent work has determined that the IBB domain has specialized functions at every step of the import and export pathway. Unexpectedly, this stretch of ~40 amino acids plays an essential role in regulating processes such as formation of the import complex, docking and translocation through the nuclear pore complex (NPC), release of import cargoes into the cell nucleus and finally recycling of import adaptors and importin β into the cytoplasm. Thus, the IBB domain is a master regulator of nucleocytoplasmic transport, whose complex molecular function is only recently beginning to emerge. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.
    Biochimica et Biophysica Acta 10/2010; 1813(9):1578-92. DOI:10.1016/j.bbamcr.2010.10.012 · 4.66 Impact Factor
Show more

Preview (2 Sources)

3 Reads
Available from