Oxidative chemical vapor deposition (oCVD) of patterned and functional grafted conducting polymer nanostructures

Journal of Materials Chemistry (Impact Factor: 5.97). 01/2010; 20:3968--3972. DOI: 10.1039/B925736E

ABSTRACT We present a simple one-step process to simultaneously create patterned and amine functionalized biocompatible conducting polymer nanostructures, using grafting reactions between oxidative chemical vapor deposition (oCVD) PEDOT conducting polymers and amine functionalized polystyrene (PS) colloidal templates. The functionality of the colloidal template is directly transferred to the surface of the grafted PEDOT, which is patterned as nanobowls, while preserving the advantageous electrical properties of the bulk conducting polymer. This surface functionality affords the ability to couple bioactive molecules or sensing elements for various applications, which we demonstrate by immobilizing fluorescent ligands onto the PEDOT nanopatterns. Nanoscale substructure is introduced into the patterned oCVD layer by replacing the FeCl3 oxidizing agent with CuCl2.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: a Centro ricerche per le energie non convenzionali, Istituto ENI Donegani, ENI S.p.A., via G. Fauser 4, a b s t r a c t The growing interest in organic photovoltaics and the potential for a future mass production urges to find alternatives to the presently employed materials that are well performing but not convenient from the point of view of large area fabrication. Electrodes based on non abundant elements, or that constitute an issue for devices (i) long term stability, (ii) mechanical robustness and (iii) continuous fabrication process, shall be possibly soon replaced by earth abundant, easy processable and sustainable materials. Many groups have recently started to devote their research work on materials not containing metals or metal oxides, and the time has come to summarise the progress that has been reached so far.
    Solar Energy Materials and Solar Cells 02/2012; · 5.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polymers with their tunable functionalities offer the ability to rationally design micro- and nano-engineered materials. Their synthesis as thin films have significant advantages due to the reduced amounts of materials used, faster processing times and the ability to modify the surface while preserving the structural properties of the bulk. Furthermore, their low cost, ease of fabrication and the ability to be easily integrated into processing lines, make them attractive alternatives to their inorganic thin film counterparts. Chemical vapor deposition (CVD) as a polymer thin-film deposition technique offers a versatile platform for fabrication of a wide range of polymer thin films preserving all the functionalities. Solventless, vapor-phase deposition enable the integration of polymer thin films or nanostructures into micro- and nanodevices for improved performance. In this review, CVD of functional polymer thin films and the polymerization mechanisms are introduced. The properties of the polymer thin films that determine their behavior are discussed and their technological advances and applications are reviewed.
    Reports on Progress in Physics 01/2012; 75(1):016501. · 13.23 Impact Factor