Article

Ultrastructural immunolocalization of lysyl oxidase in vascular connective tissue.

The Journal of Cell Biology (Impact Factor: 9.69). 10/1986; 103(3):1121-8.
Source: PubMed

ABSTRACT The localization of lysyl oxidase was examined in calf and rat aortic connective tissue at the ultrastructural level using polyclonal chicken anti-lysyl oxidase and gold conjugated rabbit anti-chicken immunoglobulin G to identify immunoreactive sites. Electron microscopy of calf aortic specimens revealed discrete gold deposits at the interface between extracellular bundles of amorphous elastin and the microfibrils circumferentially surrounding these bundles. The antibody did not react with microfibrils which were distant from the interface with elastin. There was negligible deposition of gold within the bundles of amorphous elastin and those few deposits seen at these sites appeared to be associated with strands of microfibrils. Lysyl oxidase was similarly localized in newborn rat aorta at the interface between microfibrils and nascent elastin fibers. Gold deposits were not seen in association with extracellular collagen fibers even after collagen-associated proteoglycans had been degraded by chondroitinase ABC. However, the antibody did recognize collagen-bound lysyl oxidase in collagen fibers prepared from purified collagen to which the enzyme had been added in vitro. No reaction product was seen if the anti-lysyl oxidase was preadsorbed with purified lysyl oxidase illustrating the specificity of the antibody probe. The present results are consistent with a model of elastogenesis predicting the radial growth of the elastin fiber by the deposition and crosslinking of tropoelastin units at the fiber-microfibril interface.

0 Followers
 · 
104 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Elastic fiber formation involves the secretion of tropoelastin which is converted to insoluble elastin by cross-linking, initiated by the oxidative deamination of lysine residues by lysyl oxidase. Five lysyl oxidase genes have been discovered. This study deals with the expression of two isoforms, LOX and LOX-like (LOXL), in human foreskin and in a human skin-equivalent (SE) model that allows the formation of elastic fibers. In this model, keratinocytes are added to a dermal equivalent made of fibroblasts grown on a chitosan-cross-linked collagen-GAG matrix. LOX and LOXL were detected by immunohistochemistry in the dermis and the epidermis of both normal skin and in a SE. This expression was confirmed by in situ hybridization on the SE. LOX and LOXL expression patterns were confirmed in human skin. The ultrastructural localization of LOXL was indicative of its association with elastin-positive materials within the SE and human skin, though interaction with collagen could not be discarded. LOX was found on collagen fibers and could be associated with elastin-positive materials in the SE and human skin. LOXL and LOX were detected in keratinocytes where LOX was mainly expressed by differentiating keratinocytes, in contrast to LOXL that can be found in both proliferating and differentiating fibroblasts. These data favor a role for LOXL in elastic fiber formation, together with LOX, and within the epidermis where both enzymes should play a role in post-translational modification of yet unknown substrates.
    Journal of Investigative Dermatology 04/2004; 122(3):621-30. DOI:10.1111/j.0022-202X.2004.22330.x · 6.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that intracellular trafficking and extracellular assembly of tropoelastin into elastic fibers is facilitated by the 67-kD elastin-binding protein identical to an enzymatically inactive, alternatively spliced variant of beta-galactosidase (S-Gal). In the present study, we investigated elastic-fiber assembly in cultures of dermal fibroblasts from patients with either Morquio B disease or GM1-gangliosidosis who bore different mutations of the beta-galactosidase gene. We found that fibroblasts taken from patients with an adult form of GM1-gangliosidosis and from patients with an infantile form, carrying a missense mutations in the beta-galactosidase gene-mutations that caused deficiency in lysosomal beta-galactosidase but not in S-Gal-assembled normal elastic fibers. In contrast, fibroblasts from two cases of infantile GM1-gangliosidosis that bear nonsense mutations of the beta-galactosidase gene, as well as fibroblasts from four patients with Morquio B who had mutations causing deficiency in both forms of beta-galactosidase, did not assemble elastic fibers. We also demonstrated that S-Gal-deficient fibroblasts from patients with either GM1-gangliosidosis or Morquio B can acquire the S-Gal protein, produced by coculturing of Chinese hamster ovary cells permanently transected with S-Gal cDNA, resulting in improved deposition of elastic fibers. The present study provides a novel and natural model validating functional roles of S-Gal in elastogenesis and elucidates an association between impaired elastogenesis and the development of connective-tissue disorders in patients with Morquio B disease and in patients with an infantile form of GM1-gangliosidosis.
    The American Journal of Human Genetics 08/2000; 67(1):23-36. DOI:10.1086/302968 · 10.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Keratoconus is a bilateral disease characterized by progressive corneal thinning leading to irregular astigmatism that results in significant visual impairment. Despite extensive research, the exact etiopathogenesis of keratoconus remains unknown. Many copper-dependent enzymes such as superoxide dismutases, cytochrome c oxidase and lysyl oxidase have been shown to be altered in keratoconic corneas, and a decrease of copper levels in the diseased tissue has been reported as well. We propose a hypothesis linking all the putative pathways of keratoconus development and suggest that copper imbalance in corneal tissue may be an independent risk factor for the disease. The assessment of copper levels and its distribution in keratoconic corneas warrants further investigation.
    Medical Hypotheses 03/2015; 84(5). DOI:10.1016/j.mehy.2015.02.017 · 1.15 Impact Factor

Preview (2 Sources)

Download
0 Downloads
Available from