Higgs-Boson Production in Association with Heavy Quarks

Source: arXiv

ABSTRACT Associated production of a Higgs boson with a heavy, i.e. top or bottom, quark-anti-quark pair provide observation channels for Higgs bosons at the LHC which can be used to measure the respective Yukawa couplings. For the light supersymmetric Higgs boson we present SUSY-QCD corrections at the one-loop level, which constitute a significant contribution to the cross section.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Higgs-boson production in association with bottom quarks is an important discovery channel for supersymmetric Higgs particles at hadron colliders for large values of tan(beta). We present the complete O(alpha) electroweak and O(alpha_s) strong corrections to associated bottom-Higgs production through bb fusion in the MSSM and improve this next-to-leading-order prediction by known two-loop contributions to the Higgs self-energies, as provided by the program FeynHiggs. Choosing proper renormalization and input-parameter schemes, the bulk of the corrections (in particular the leading terms for tan(beta)) can be absorbed into an improved Born approximation. The remaining non-universal corrections are typically of the order of a few per cent. Numerical results are discussed for the benchmark scenarios SPS 1b and SPS 4. Comment: 24 pages, 5 figures, LaTex, 1 figure added, reference added, version published in JHEP
    Journal of High Energy Physics 11/2006; · 5.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of the Standard Model (SM) or supersymmetric (SUSY) Higgs bosons belongs to the main endeavors of the Large Hadron Collider (LHC). In this article the status of the signal and background calculations for Higgs boson production at the LHC is reviewed.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In models with an enhanced coupling of the Higgs boson to the bottom quark, the dominant production mechanism in hadronic collisions is often the partonic sub-process, bg ->bH. We derive the weak corrections to this process and show that they can be accurately approximated by an "Improved Born Approximation". At the Tevatron, these corrections are negligible and are dwarfed by PDF and scale uncertainties for M_H < 200 GeV. At the LHC, the weak corrections are small for M_H < 500 GeV. For large Higgs boson masses, the corrections become significant, and are ~18% for M_H ~ 1 TeV at E_CM=10 TeV. Comment: 25 pages, discussion of PDF uncertainties added. Version accepted for publication in Phys. Rev. D.
    Physical review D: Particles and fields 02/2010;


1 Download
Available from