Effects of crayfish on leaf processing and invertebrate colonisation of leaves in a headwater stream: decoupling of a trophic cascade

Oecologia (Impact Factor: 3.01). 01/2000; 124:608-614. DOI: 10.1007/s004420000422

ABSTRACT I performed a field experiment to test the hypothesis that omnivorous crayfish both promote the breakdown of leaves (basal resources) and decouple any potential trophic cascade by similtaneously affecting intermediate consumers as well as there basal resource. Leaf packs were placed inside in situ artificial channels, which excluded or allowed access to crayfish.. During a 4 week period, crayfish greatly promoted leaf processing, with decomposition rates among the fastest ever recorded from temperate streams. Crayfish also affected invertebrate abundance in the leaf packs. As a result of resource consumption, predation and bioturbation, crayfish treatments contained significantly lower densities of invertebrates. In contrast, exclusion of crayfish did not promote leaf decay via increased colonisation by detritivores, primarily because of the conspicuous lack of shredder insects in New Zealnd streams. The results support the hypothesis that omnivorous top consumers decouple cascading chains through similtaneous direct and indirect effects on intermediate consumers and basal resources. Decapod consumers, which have largely been ignored in leaf decomposition studies, can be key leaf processorsin temperate streams where shredder insects are poorly represented.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stromatolites, the dominant Precambrian life form, declined in the Phanerozoic to occur today in only a few sites. This decline has been attributed to evolution of metazoan grazers, but stromatolites in our study site, Cuatro Ciénegas, Coahuila, México, harbor diverse macroinvertebrates. Drawing on food chain theory, we hypothesized that fish predation on invertebrates controls invertebrate populations, allowing stromatolites to flourish in Cuatro Ciénegas. Our experiment used small mesh (1mm) cages to exclude all but larval fishes, and larger (6.5mm) cages to exclude all larger fishes (including the molluscivorous and omnivorous endemic polymorphic cichlid, Herichthys minckleyi), but allow access to all sizes of the abundant endemic pupfish, Cyprinodon bifasciatus. No effects of treatments on invertebrate densities were noted at 6week, but significant effects were observed on specific taxonomic groups after 3month. In absence of fishes, hydrobiidae snails and ceratopogonids increased 3- and 5-fold, respectively, and invertebrate assemblage composition varied among treatments. Algal biomass was not affected by treatments, but algal species composition appeared to change. Overall results suggest that fish assemblages structure invertebrate assemblages, and that fishes may also be factors in determining algal communities.
    Hydrobiologia 01/2006; 563(1):407-420. · 1.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coarse particulate organic matter is often broken down by specialist shredder invertebrates in temperate streams. In some tropical streams, larger, non-specialist, omnivorous fauna, (macroconsumers), particularly decapod shrimps and crabs, have been found to process coarse particulate matter. Larger shrimps and fish may also prey on or inhibit smaller invertebrates. Depending on the relative importance of larger and smaller fauna in leaf processing and in predatory interactions, we could expect that exclusion of larger fauna could either result in a decrease in leaf processing (if they were important in shredding or bioturbation) or increase in leaf processing if they negatively affected smaller shredders. We tested this by excluding fauna of different sizes from leaf peaks using bags with different sizes of mesh –0.2mm (exclusion of most fauna), 2mm (exclusion of larger fauna), and 10mm (access to most fauna). Bag effect on leaf processing was minimized by constructing the bags of the same, fine, material, and sewing a relatively small window of the required mesh size. The experiment was conducted on two occasions in three streams of the urban forest of Parque Estadual da Pedra Branca, city of Rio de Janeiro. The three streams differed in larger fauna of shrimps (Macrobrachium potiuna), crabs, tadpoles, and fish. Packs were incubated for six time intervals and the rate of leaf processing calculated as the exponential rate of loss of leaf material. Rate of leaf processing was faster in bags with the largest mesh size; the rates in the other two mesh sizes were not statistically different. Rates varied between experiments and among streams. We could not attribute the faster leaf processing to any particular component of the larger fauna; the patterns of differences among streams and between experiments were not associated with particular taxa. There was no general trend of fewer smaller fauna in the presence of macroconsumers; the few smaller taxa that were different between mesh sizes were variously less and more abundant in the 10-mm mesh bags compared to the 2-mm. Known shredders were rare in the smaller fauna; the mining chironomid Stenochironomus was common, but was apparently not affected by larger fauna and apparently did not increase leaf processing. We conclude that macroconsumers and not smaller fauna had a positive effect on leaf processing, and this confirms a pattern observed in some other coastal Neotropical streams.
    Hydrobiologia 01/2010; 638(1):55-66. · 1.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Benthic consumers influence stream ecosystem structure and function, but these interactions depend on environmental context. We experimentally quantified the effects of central stoneroller minnows (Campostoma anomalum (Rafinesque) and Meek’s crayfish (Orconectes meeki meeki (Faxon)) on benthic communities using electric exclusion quadrats in Little Mulberry Creek before (June) and during (August) seasonal stream drying. Unglazed ceramic tiles were deployed in June and August to measure periphyton and invertebrate abundance, and leafpack decomposition and primary production were also measured in August. Relationships between stoneroller and crayfish density and the size of consumer effects were evaluated with multiple linear regression models. Average chlorophyll a abundance was greater on exposed than exclusion tiles in August, but not in June. Sediment dry mass, periphyton ash-free dry mass (AFDM), and chironomid densities on tiles did not differ among treatments in either period. Leaf packs decayed faster in exposed than exclusion treatments (k exposed=0.038±0.013, k exclusion=0.007±0.002), but consumer effects were stronger in some pools than others. Leafpack invertebrate biomass and abundance and tile primary productivity did not differ among treatments. Consumer effects on chlorophyll a were related to crayfish and stoneroller density, and effects on chironomid density were related to stoneroller density. These results contrast with a previous exclusion experiment in Little Mulberry Creek that demonstrated strong consumer effects. The influence of stream drying on consumer effects appears to have been reduced by strong spates, underscoring the importance of conducting multi-year studies to determine the magnitude of variability in ecological interactions. KeywordsMeek’s crayfish (Orconectes meeki meeki) -Central stonerollers (Campostoma anomalum) -Periphyton-Algae-Electric exclusions-Intermittent streams
    Hydrobiologia 01/2010; 644(1):127-137. · 1.99 Impact Factor