Article

Next-to-leading order QCD corrections to Z boson pair production via vector-boson fusion

Physical Review D (Impact Factor: 4.69). 05/2006; DOI: 10.1103/PhysRevD.73.113006
Source: arXiv

ABSTRACT Vector-boson fusion processes are an important tool for the study of electroweak symmetry breaking at hadron colliders, since they allow to distinguish a light Higgs boson scenario from strong weak boson scattering. We here consider the channels WW->ZZ and ZZ->ZZ as part of electroweak Z boson pair production in association with two tagging jets. We present the calculation of the NLO QCD corrections to the cross sections for p p -> e+ e- mu+ mu- + 2 jets and p p -> e+ e- nu_mu nubar_mu + 2 jets via vector-boson fusion at order alpha_s alpha^6, which is performed in the form a NLO parton-level Monte Carlo program. The corrections to the integrated cross sections are found to be modest, while the shapes of some kinematical distributions change appreciably at NLO. Residual scale uncertainties typically are at the few percent level.

0 Bookmarks
 · 
76 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The status of two Monte Carlo generators, HELAC-PHEGAS, a program for multi-jet processes and VBFNLO, a parton level program for vector boson fusion processes at NLO QCD, is briefly presented. The aim of these tools is the simulation of events within the Standard Model at current and future high energy experiments, in particular the LHC. Some results related to the production of multi-jet final states at the LHC are also shown.
    Acta Physica Polonica Series B 11/2007; · 1.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We discuss results for di-boson plus two jets production processes at the LHC at NLO QCD. Issues related to the scale choice are reviewed. We focus on the distributions of the invariant mass and rapidity separation of the two hardest jets and show, for $W^\pm \gamma jj$ and $Z\gamma jj$ production, how the contribution from the radiative decays of the massive gauge bosons can be significantly reduced.
    10/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The computation of the O(alphas) QCD corrections to the cross sections for W+W-gamma and ZZgamma production in hadronic collisions is presented. We consider the case of a real photon in the final state, but include full leptonic decays of the W and Z bosons. Numerical results for the LHC and the Tevatron are obtained through a fully flexible parton level Monte Carlo program based on the structure of the VBFNLO program, allowing an easy implementation of arbitrary cuts and distributions. We show the dependence on scale variations of the integrated cross sections and provide evidence that next-to-leading order (NLO) QCD corrections strongly modify the LO predictions for observables at the LHC both in magnitude and in shape.
    Physical Review D 01/2010; 81. · 4.69 Impact Factor

Full-text

View
0 Downloads
Available from