Monoclonal antibodies to Fc receptors for IgG on human mononuclear phagocytes. Antibody characterization and induction of superoxide production in a monocyte cell line.

Journal of Biological Chemistry (Impact Factor: 4.6). 10/1986; 261(27):12856-64.
Source: PubMed

ABSTRACT We have utilized monoclonal antibodies against the two IgG Fc receptors (p40 and p72) of U937 cells to stimulate the release of superoxide. The monoclonal antibody (mAb) specific for p40 (IV3) has been described elsewhere. A murine IgG1 mAb specific for the high affinity p72 Fc receptor (designated mAb FcR32 or simply mAb 32) bound to the same p72 precipitated by Sepharose-human IgG as shown by preclearing experiments and by identical isoelectric focussing patterns. Binding of mAb 32 to p72 was independent of the Fc region of the antibody since Fab' fragments of mAb 32 affinity adsorbed p72. The binding of both mAb 32 and human IgG1 to the intact U937 cell was not reciprocally inhibitory, indicating that mAb 32 does not interfere with the ligand binding site of p72. mAb 32 bound to human monocytes, U937, and HL60 cells, but not to granulocytes or lymphocytes. U937 cells cultured in gamma-interferon and 1,25-dihydroxycholecalciferol generated superoxide when incubated with mAb 32 or IV3 followed by cross-linking with F(ab')2 anti-murine Ig. Incubation with mAb 32 or IV3 alone or with 3 of 5 other anti-U937 mAbs cross-linked with anti-murine Ig did not result in superoxide generation. Immune complex-mediated superoxide production was inhibited 80% by IgG, but not by mAb 32 or IV3.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Besides its traditional role in hemostasis, factor XIII subunit A (FXIII-A) is supposed to function as a cellular transglutaminase and to be involved in certain intracellular processes, including cytoskeletal remodeling. To investigate its intracellular role, the aim of the present study was to follow changes in FXIII-A production in combination with the receptor-mediated phagocytic activities of monocytes/macrophages and to examine the phagocytic functions of monocytes in patients with FXIII-A deficiency. Human blood monocytes were isolated from the buffy coats of healthy volunteers and cultured for 4 days. The FcγR-mediated phagocytosis of sensitized erythrocytes (EA) and the complement receptor (CR)-mediated phagocytosis of complement-coated yeast particles were studied during monocyte/macrophage differentiation. Changes in the gene expression of FXIII-A were detected by real-time quantitative RT-PCR. FXIII-A protein production was investigated with fluorescent image analysis at single cell level and Western immunoblot analysis. Both the FcγR and CR-mediated phagocytosis increased during culturing, which peaked on day 3. The phagocytic activity of the cells could be markedly inhibited with monodansylcadaverine, an inhibitor of the transglutaminase-induced crosslinking of proteins. The phagocytosis of EA, complement-coated and uncoated yeast particles was found to be strongly diminished in monocytes of FXIII-A deficient patients. The phagocytic functions of cultured cells showed a change in parallel with the alterations in FXIII-A mRNA expression, as well as with that in FXIII-A in protein synthesis detected by image and Western immunoblot analyses in concert. Our results suggest that FXIII-A plays a role in the Fcγ and complement receptor-mediated phagocytic activities of monocytes/macrophages.
    Cellular Immunology 05/2004; DOI:10.1016/S0008-8749(04)00055-3 · 1.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: FcγRs are critical mediators of mAb cancer therapies, because they drive cytotoxic processes upon binding of effector cells to opsonized targets. Along with NK cells, monocytes are also known to destroy Ab-coated targets via Ab-dependent cellular cytotoxicity (ADCC). However, the precise mechanisms by which monocytes carry out this function have remained elusive. In this article, we show that human monocytes produce the protease granzyme B upon both FcγR and TLR8 activation. Treatment with TLR8 agonists elicited granzyme B and also enhanced FcγR-mediated granzyme B production in an additive fashion. Furthermore, monocyte-mediated ADCC against cetuximab-coated tumor targets was enhanced by TLR8 agonist treatment, and this enhancement of ADCC required granzyme B. Hence we have identified granzyme B as an important mediator of FcγR function in human monocytes and have uncovered another mechanism by which TLR8 agonists may enhance FcγR-based therapies. Copyright © 2015 by The American Association of Immunologists, Inc.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Material Supplementary 3.DCSupplemental.html Subscriptions is online at: The Journal of Immunology Information about subscribing to