Article

Difficidin and oxydifficidin: novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis. I. Production, taxonomy and antibacterial activity.

Merck Sharp and Dohme Research Laboratories, Rahway, New Jersey.
The Journal of Antibiotics (Impact Factor: 2.19). 01/1988; 40(12):1677-81. DOI: 10.7164/antibiotics.40.1677
Source: PubMed

ABSTRACT Difficidin and oxydifficidin, two novel macrocyclic polyene lactone phosphate esters were discovered in fermentation broths of each of two strains of Bacillus subtilis: ATCC 39320 and ATCC 39374. Difficidin and oxydifficidin each showed a broad spectrum of activity against aerobic and anaerobic bacteria. Many of the susceptible aerobes and anaerobes were human pathogens resistant to one or more antibiotics. Difficidin and oxydifficidin when administered intraperitoneally protected mice against an otherwise lethal bacteremia caused by Klebsiella pneumoniae (ED50 in mg/kg of 1.31 and 15.6 respectively). Neither difficidin nor oxydifficidin were effective when administered via the subcutaneous route.

0 Bookmarks
 · 
190 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Bacillus amyloliquefaciens subsp. plantarum strain UCMB5113 is a Gram-positive rhizobacterium that can colonize plant roots and stimulate plant growth and defense based on unknown mechanisms. This reinforcement of plants may provide protection to various forms of biotic and abiotic stress. To determine the genetic traits involved in the mechanism of plant-bacteria association, the genome sequence of UCMB5113 was obtained by assembling paired-end Illumina reads. The assembled chromosome of 3,889,532 bp was predicted to encode 3,656 proteins. Genes that potentially contribute to plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, acetoin synthesis and siderophore production were identified. Moreover, annotation identified putative genes responsible for non-ribosomal synthesis of secondary metabolites and genes supporting environment fitness of UCMB5113 including drug and metal resistance. A large number of genes encoding a diverse set of secretory proteins, enzymes of primary and secondary metabolism and carbohydrate active enzymes were found which reflect a high capacity to degrade various rhizosphere macromolecules. Additionally, many predicted membrane transporters provides the bacterium with efficient uptake capabilities of several nutrients. Although, UCMB5113 has the possibility to produce antibiotics and biosurfactants, the protective effect of plants to pathogens seems to be indirect and due to priming of plant induced systemic resistance. The availability of the genome enables identification of genes and their function underpinning beneficial interactions of UCMB5113 with plants. Copyright: ß 2014 Niazi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All sequence files are available from the European Nucleotide Archive (ENA) database (accession number HG328254). Funding: This work was supported by the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS), Carl Tryggers Stiftelse, Nilsson-Ehle Stiftelsen, Helge-Ax:son Johnsons Stiftelse, the Swedish University of Agricultural Sciences (SLU) and the Higher Education Commission of Pakistan (HEC). Funding for plant growth facilities were provided in part by KFI-VR. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist.
    PLoS ONE 08/2014; · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed.
    Marine Drugs 01/2013; 11(8):2846-72. · 3.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acetylcholinesterase (AChE) inhibitors or anticholinesterases reduce the activity of enzyme acetylcholinesterase that degrades the neurotransmitter acetylcholine in the brain. The inhibitors have a significant pharmacological role in neurodegenerative diseases like Alzheimer's and Parkinson's etc. Although plants have been a significant source of these compounds, there are very few sporadic reports of microorganisms producing such inhibitors. Anticholinesterase activity in bacterial associates of marine soft corals and sponges were not previously reported. We screened 887 marine bacteria for the presence of acetylcholinesterase inhibitors, in a microplate based assay, and found that 140 (15.8%) of them inhibit the electric eel enzyme acetylcholinesterase. Majority of the active isolates were bacterial associates of soft corals followed by sediment isolates while most of the potent inhibitors belonged to the bacterial associates of marine sponges. Maximum inhibition (54%) was exhibited by a bacterial strain M18SP4P (ii), isolated from the marine sponge Fasciospongia cavernosa. Based on phenotypic characterization and 16S rDNA sequencing, the strain was identified as Bacillus subtilis - revealing yet another activity in a strain of the model organism that is considered to be a cell factory. TLC bioautography of the methanol extract of this culture, showed the presence of two major components having this activity, when compared to Galanthamine, the positive control. From the results of our study, we conclude that acetylcholinesterase inhibitors are quite prevalent in marine bacteria, particularly the bacterial associates of marine invertebrates. Several potential AChE inhibitors in marine bacteria are waiting to be discovered to provide easily manipulable natural sources for the mass production of these therapeutic compounds.
    Microbial Cell Factories 02/2014; 13(1):24. · 3.31 Impact Factor