Biochemical characterization of a Neisseria meningitidis polysialyltransferase reveals novel functional motifs in bacterial sialyltransferases

Abteilung Zelluläre Chemie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
Molecular Microbiology (Impact Factor: 5.03). 09/2007; 65(5). DOI: 10.1111/j.1365-2958.2007.05862.x
Source: PubMed

ABSTRACT The extracellular polysaccharide capsule is an essential virulence factor of Neisseria meningitidis, a leading cause of severe bacterial meningitis and sepsis. Serogroup B strains, the primary disease causing isolates in Europe and America, are encapsulated in alpha-2,8 polysialic acid (polySia). The capsular polymer is synthesized from activated sialic acid by action of a membrane-associated polysialyltransferase (NmB-polyST). Here we present a comprehensive characterization of NmB-polyST. Different from earlier studies, we show that membrane association is not essential for enzyme functionality. Recombinant NmB-polyST was expressed, purified and shown to synthesize long polySia chains in a non-processive manner in vitro. Subsequent structure-function analyses of NmB-polyST based on refined sequence alignments allowed the identification of two functional motifs in bacterial sialyltransferases. Both (D/E-D/E-G and HP motif) are highly conserved among different sialyltransferase families with otherwise little or no sequence identity. Their functional importance for enzyme catalysis and CMP-Neu5Ac binding was demonstrated by mutational analysis of NmB-polyST and is emphasized by structural data available for the Pasteurella multocida sialyltransferase PmST1. Together our data are the first description of conserved functional elements in the highly diverse families of bacterial (poly)sialyltransferases and thus provide an advanced basis for understanding structure-function relations and for phylogenetic sorting of these important enzymes

Download full-text


Available from: Willie F Vann, Jun 27, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sialyltransferase structures fall into either GT-A or GT-B glycosyltransferase fold. Some sialyltransferases from the Photobacterium genus have been shown to contain an additional N-terminal immunoglobulin (Ig)-like domain. Photobacterium damselae α2-6-sialyltransferase has been used efficiently in enzymatic and chemoenzymatic synthesis of α2-6-linked sialosides. Here we report three crystal structures of this enzyme. Two structures with and without a donor substrate analog CMP-3F(a)Neu5Ac contain an immunoglobulin (Ig)-like domain and adopt the GT-B sialyltransferase fold. The binary structure reveals a non-productive pre-Michaelis complex, which are caused by crystal lattice contacts that prevent the large conformational changes. The third structure lacks the Ig-domain. Comparison of the three structures reveals small inherent flexibility between the two Rossmann-like domains of the GT-B fold. Copyright © 2014. Published by Elsevier B.V.
    FEBS Letters 11/2014; 588(24). DOI:10.1016/j.febslet.2014.11.003 · 3.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polysialyltransferases (PSTs), assemble polysialic acid (PSA) and have been implicated in many biological processes. For example, certain bacteria such as neuroinvasive Neisseria meningitidis decorate themselves in a PSA capsule to evade the innate immune system. Identifying inhibitors of PST therefore represents an attractive therapeutic goal and herein we describe a high-throughput, robust and sensitive microtitre plate-based activity assay for PST from N. meningitidis. A tri-sialyl lactoside (GT3) serving as the acceptor substrate was immobilized on a 384 well plate by click chemistry. Incubation with PST and CMP-sialic acid for 30 minutes resulted in polysialylation. The immobilized PSA was then directly detected using a GFP-fused PSA binding protein, consisting of the catalytically inactive double mutant of an endosialidase (GFP-EndoNF DM). We report very good agreement between kinetic and inhibition parameters obtained with our on-plate assay versus our in-solution validation assay. In addition we prove our assay is robust and reliable with a Z' score of 0.79. All aspects of our assay are easily scalable due to optimization trials that allowed immobilization of acceptor substrates prepared from crude reaction mixtures and the use of cell lysates. This assay methodology enables large-scale PST inhibitor screens and can be harnessed for directed evolution screens.
    Analytical Biochemistry 10/2013; 444. DOI:10.1016/j.ab.2013.09.030 · 2.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two closely related pathogenic species have evolved in the genus Neisseria: N. meningitidis and N. gonorrhoeae, which occupy different host niches and cause different clinical entities. In contrast to the pathogen N. gonorrhoeae, N. meningitidis is a commensal and only rarely becomes invasive. Little is known about the genetic background of the entirely different lifestyles in these closely related species. Meningococcal NMB1843 encodes a transcriptional regulator of the MarR family. The gonococcal homologue FarR regulates expression of farAB, mediating fatty acid resistance. We show that NmFarR also directly interacts with NmfarAB. Yet, by contrast to N. gonorrhoeae, no significant sensitivity to fatty acids was observed in a DeltafarR mutant due to intrinsic resistance of meningococci. Further analyses identified an NmFarR-repressed protein absent from N. gonorrhoeae. This protein is the meningococcus-specific adhesin and vaccine component NadA that has most likely been acquired by horizontal gene transfer. NmFarR binds to a 16 base pair palindromic repeat within the nadA promoter. De-repression of nadA resulted in significantly higher association of a DeltafarR strain with epithelial cells. Hence NmFarR has gained control over a meningococcus-specific gene involved in host colonization and thus contributed to divergent niche adaptation in pathogenic Neisseriae.
    Molecular Microbiology 05/2009; 72(4):1054-67. DOI:10.1111/j.1365-2958.2009.06710.x · 5.03 Impact Factor