Article

Temperature dependent XAFS studies of local atomic structure of the perovskite-type zirconates

University of Grenoble, Grenoble, Rhône-Alpes, France
Physical review. B, Condensed matter (Impact Factor: 3.66). 04/2006; 73(13):134109. DOI: 10.1103/PhysRevB.73.134109

ABSTRACT Temperature dependent preedge and extended x-ray absorption fine structure measurements at the Zr K edge for the perovskite-type zirconates PbZr0.515Ti0.485O3 (PZT), PbZrO3 (PZ), and BaZrO3 are performed. To carry out a more accurate study of the weak reconstruction of the local atomic structure we employed a combination of two techniques: (i) analysis of the preedge fine structure, and (ii) analysis of the Fourier transform of the difference between χ(k) functions obtained at different temperatures. A detailed investigation of local atomic structure in the cubic phase for all the crystals is also performed. It is shown that neither the displacive nor the order-disorder model can describe correctly the changes of local atomic structure during phase transitions in PZ and PZT. A spherical model describing the local atomic structure of perovskite-type crystals suffering structural phase transitions is proposed.

Download full-text

Full-text

Available from: Elena Nazarenko, Sep 11, 2014
0 Followers
 · 
74 Views
  • Source
    • ", at the zirconium K-edge of PbZrO 3 [14], PbZr 0.515 Ti 0.485 O 3 [14], BaZrO 3 [14], at the K-edge of Mn in La 1−x Ca x MnO 3 [36] [37] and at the K-edge of Fe in in "
    [Show abstract] [Hide abstract]
    ABSTRACT: The temperature dependence of the pre-edge features in x-ray absorption spectroscopy is reviewed. Then, the temperature dependence of the pre-edge structure at the K-edge of titanium in rutile TiO(2) is measured at low and room temperature. The first two peaks grow with temperature. The fact that these two peaks also correspond to electric quadrupole transitions is explained by a recently proposed theory.
    Journal of Physics Condensed Matter 03/2010; 22(12):125504. DOI:10.1088/0953-8984/22/12/125504 · 2.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: La thèse porte sur l'étude de deux classes d'oxyde par spectroscopie d'absorption X, en mode diffraction résonante pour la magnétite et en mode absorption pour les pérovskites. La structure électronique de Fe3O4 a été étudiée au seuil K du Fe pour confirmer/réfuter le modèle d'ordre de charge à basse température. La méthode développée a permis d'obtenir une information quantitative en utilisant un grand nombre de réflexions et de confirmer la présence de l'ordre de charge (Fe2.5±δ δmax=0.12, δmin=0.04). Les pérovskites (PbZrO3 et BaZrO3) ont été étudiés pour mieux comprendre la nature géométrique de leur transition de phase. L'analyse de spectres XANES au seuil K du Zr pour PbZrO3 a infirmé le modèle «déplacement» à basse température mais il a indiqué la conservation des distorsions locales dans sa phase cubique. Une interprétation de la transition structurale ferroélectrique est proposée en terme de changement d'environnement local du Zirconium dans le cadre du modèle «sphérique».
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Local atomic structure of the piezoelectric ceramics KxNa1-xNbO3 (x=0.00, 0.05, 0.30, 0.40, 0.50 and 0.65) is studied in all phase regions (10 K–1023 K) using Nb K-edge extended X-ray absorption fine-structure (EXAFS) spectroscopy. We have shown the validity of a new spherical model for phase transitions on the basis of both fitting of EXAFS signal in the R-space and differential EXAFS analysis. Within this model the Nb atoms are located on the surfaces of small spheres of constant radii surrounding centers of NbO6 octahedrons in all phases. The distribution of the Nb atom on this surface changes during phase transitions. Besides, the analysis of local structure reveals that the geometry of NbO6 octahedra does not depend on the x value at each temperature, whereas the octahedra rotation angles do.
    EPL (Europhysics Letters) 01/2007; 77(2). DOI:10.1209/0295-5075/77/26003 · 2.27 Impact Factor
Show more