Article

Modulation of the in vitro candidacidal activity of human neutrophil defensins by target cell metabolism and divalent cations.

Department of Medicine, UCLA School of Medicine, Los Angeles 90024.
Journal of Clinical Investigation (Impact Factor: 13.77). 07/1988; 81(6):1829-35. DOI: 10.1172/JCI113527
Source: PubMed

ABSTRACT We tested the in vitro susceptibility of Candida albicans to three defensins from human neutrophilic granulocytes (HNP-1, 2, and 3), a homologous defensin from rabbit leukocytes (NP-1), and four unrelated cationic peptides. Although the primary amino acid sequences of HNP-1, 2, and 3 are identical except for a single amino-terminal amino acid alteration, HNP-1 and HNP-2 killed C. albicans but HNP-3 did not. C. albicans blastoconidia were protected from HNP-1 when incubations were performed in the absence of oxygen or in the presence of inhibitors that blocked both of its mitochondrial respiratory pathways. Neither anaerobiosis nor mitochondrial inhibitors substantially protected C. albicans exposed to NP-1, poly-L-arginine, poly-L-lysine, or mellitin. Human neutrophilic granulocyte defensin-mediated candidacidal activity was inhibited by both Mg2+ and Ca2+, and was unaffected by Fe2+. In contrast, Fe2+ inhibited the candidacidal activity of NP-1 and all of the model cationic peptides, whereas Mg2+ inhibited none of them. These data demonstrate that susceptibility of C. albicans to human defensins depends both on the ionic environment and on the metabolic state of the target cell. The latter finding suggests that leukocyte-mediated microbicidal mechanisms may manifest oxygen dependence for reasons unrelated to the production of reactive oxygen intermediates by the leukocyte.

0 Bookmarks
 · 
120 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mucosal microenvironment of the female reproductive tract (FRT) is rich in secreted endogenous antimicrobials that provide the first line of defense against pathogens. This review focuses on the spectrum of secreted antimicrobials found in the FRT that have anti-HIV functions and are regulated by the natural hormonal changes in women's life cycle. Understanding the complex nature of FRT, mucosal microenvironment will enable us to better design therapeutic interventions for women against sexually transmitted pathogens.
    American Journal Of Reproductive Immunology 04/2014; · 3.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plant defensins are small, cysteine-rich peptides that possess biological activity towards a broad range of organisms. Their activity is primarily directed against fungi, but bactericidal and insecticidal actions have also been reported. The mode of action of various antifungal plant defensins has been studied extensively during the last decades and several of their fungal targets have been identified to date. This review summarizes the mechanism of action of well-characterized antifungal plant defensins, including RsAFP2, MsDef1, MtDef4, NaD1 and Psd1, and points out the variety by which antifungal plant defensins affect microbial cell viability. Furthermore, this review summarizes production routes for plant defensins, either via heterologous expression or chemical synthesis. As plant defensins are generally considered non-toxic for plant and mammalian cells, they are regarded as attractive candidates for further development into novel antimicrobial agents.
    Molecules 08/2014; 19(8):12280-12303. · 2.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The candidacidal mechanisms of NZ17074, which is a variant of arenicin-3 from Arenicola marina, against human pathogenic fungus Candida albicans are reported in this work. The minimum inhibitory concentration (MIC) of NZ17074 toward C. albicans was 4 μg/ml, and this peptide exerted marked candidacidal activity in an energy-dependent and salt-sensitive manner. The flow cytometric analysis using propidium iodide (PI) showed that the plasma membrane of cells treated with NZ17074 was perturbed and that the cells were arrested in the G2/M phase. The dihydrorhodamine-123 (DHR-123) staining showed that the reactive oxygen species (ROS) production of C. albicans increased after exposure to NZ17074. Typical cellular disruption events, such as mitochondrial degradation, nuclear fragmentation, nuclear membrane disruption, and chromatin condensation, were further revealed through rhodamine 123 (RH123) staining, 4',6-diamidino-2-phenylindole (DAPI) staining, and transmission electron microscopy. In addition, the intracellular localization of this peptide was concentration dependent: it was located in the membrane at low concentrations (4 to 8 μg/ml) and penetrated into the cytoplasm at high concentrations (16 to 32 μg/ml). Our results suggested that NZ17074 exerts its candidacidal effects by disrupting the cell membrane, inducing apoptosis, and interrupting the cell cycle. These findings showed the potential of NZ17074 as a new candidacidal peptide, in addition to its antibacterial activities.
    Applied Microbiology and Biotechnology 05/2014; · 3.81 Impact Factor

Preview

Download
0 Downloads
Available from