Chlorophyll-proteins of the photosystem II antenna system.

Dipartimento di Biologia, Università di Padova, Italy.
Journal of Biological Chemistry (Impact Factor: 4.65). 10/1987; 262(27):13333-41.
Source: PubMed

ABSTRACT The chlorophyll-protein complexes of purified maize photosystem II membranes were separated by a new mild gel electrophoresis system under conditions which maintained all of the major chlorophyll a/b-protein complex (LHCII) in the oligomeric form. This enabled the resolution of three chlorophyll a/b-proteins in the 26-31-kDa region which are normally obscured by monomeric LHCII. All chlorophyll a/b-proteins had unique polypeptide compositions and characteristic spectral properties. One of them (CP26) has not previously been described, and another (CP24) appeared to be identical to the connecting antenna of photosystem I (LHCI-680). Both CP24 and CP29 from maize had at least one epitope in common with the light-harvesting antennae of photosystem I, as shown by cross-reactivity with a monoclonal antibody raised against LHCI from barley thylakoids. A complex designated Chla.P2, which was capable of electron transport from diphenylcarbazide to 2,6-dichlorophenolindophenol, was isolated by nondenaturing gel electrophoresis. It lacked CP43, which therefore can be excluded as an essential component of the photosystem II reaction center core. Fractionation of octyl glucoside-solubilized photosystem II membranes in the presence and absence of Mg2+ enabled the isolation of the Chla . P2 complex and revealed the existence of a light-harvesting complex consisting of CP29, CP26, and CP24. This complex and the major light-harvesting system (LHCII) are postulated to transfer excitation energy independently to the photosystem II reaction center via CP43.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxygenic photosynthesis is indispensable both for the development and maintenance of life on earth by converting light energy into chemical energy and by producing molecular oxygen and consuming carbon dioxide. This latter process has been responsible for reducing the CO2 from its very high levels in the primitive atmosphere to the present low levels and thus reducing global temperatures to levels conducive to the development of life. Photosystem I and photosystem II are the two multi-protein complexes that contain the pigments necessary to harvest photons and use light energy to catalyse the primary photosynthetic endergonic reactions producing high energy compounds. Both photosystems are highly organised membrane supercomplexes composed of a core complex, containing the reaction centre where electron transport is initiated, and of a peripheral antenna system, which is important for light harvesting and photosynthetic activity regulation. If on the one hand both the chemical reactions catalysed by the two photosystems and their detailed structure are different, on the other hand they share many similarities. In this review we discuss and compare various aspects of the organisation, functioning and regulation of plant photosystems by comparing them for similarities and differences as obtained by structural, biochemical and spectroscopic investigations.
    Current Protein and Peptide Science 03/2014; · 2.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Photoautotrophic organisms, the major agent of inorganic carbon fixation into biomass, convert light energy into chemical energy. The first step of photosynthesis consists of the absorption of solar energy by pigments binding protein complexes named photosystems. Within photosystems, a family of proteins called Light Harvesting Complexes (LHC), responsible for light harvesting and energy transfer to reaction centers, has evolved along with eukaryotic organisms. Besides light absorption, these proteins catalyze photoprotective reactions which allowed functioning of oxygenic photosynthetic machinery in the increasingly oxidant environment. In this work we review current knowledge of LHC proteins serving Photosystem II. Balance between light harvesting and photoprotection is critical in Photosystem II, due to the lower quantum efficiency as compared to Photosystem I. In particular, we focus on the role of each antenna complex in light harvesting, energy transfer, scavenging of reactive oxygen species, chlorophyll triplet quenching and thermal dissipation of excess energy. This article is part of a Special Issue entitled: Photosystem II.
    Biochimica et Biophysica Acta 06/2011; 1817(1):143-57. · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of the light-harvesting complex Lhcb4 (CP29) in photosynthesis was investigated in Arabidopsis thaliana by characterizing knockout lines for each of the three Lhcb4 isoforms (Lhcb4.1/4.2/4.3). Plants lacking all isoforms (koLhcb4) showed a compensatory increase of Lhcb1 and a slightly reduced photosystem II/I ratio with respect to the wild type. The absence of Lhcb4 did not result in alteration in electron transport rates. However, the kinetic of state transition was faster in the mutant, and nonphotochemical quenching activity was lower in koLhcb4 plants with respect to either wild type or mutants retaining a single Lhcb4 isoform. KoLhcb4 plants were more sensitive to photoinhibition, while this effect was not observed in knockout lines for any other photosystem II antenna subunit. Ultrastructural analysis of thylakoid grana membranes showed a lower density of photosystem II complexes in koLhcb4. Moreover, analysis of isolated supercomplexes showed a different overall shape of the C₂S₂ particles due to a different binding mode of the S-trimer to the core complex. An empty space was observed within the photosystem II supercomplex at the Lhcb4 position, implying that the missing Lhcb4 was not replaced by other Lhc subunits. This suggests that Lhcb4 is unique among photosystem II antenna proteins and determinant for photosystem II macro-organization and photoprotection.
    The Plant Cell 07/2011; 23(7):2659-79. · 9.25 Impact Factor

Full-text (2 Sources)

Available from
Jun 2, 2014