Chlorophyll-proteins of the photosystem II antenna system.

Dipartimento di Biologia, Università di Padova, Italy.
Journal of Biological Chemistry (Impact Factor: 4.6). 10/1987; 262(27):13333-41.
Source: PubMed

ABSTRACT The chlorophyll-protein complexes of purified maize photosystem II membranes were separated by a new mild gel electrophoresis system under conditions which maintained all of the major chlorophyll a/b-protein complex (LHCII) in the oligomeric form. This enabled the resolution of three chlorophyll a/b-proteins in the 26-31-kDa region which are normally obscured by monomeric LHCII. All chlorophyll a/b-proteins had unique polypeptide compositions and characteristic spectral properties. One of them (CP26) has not previously been described, and another (CP24) appeared to be identical to the connecting antenna of photosystem I (LHCI-680). Both CP24 and CP29 from maize had at least one epitope in common with the light-harvesting antennae of photosystem I, as shown by cross-reactivity with a monoclonal antibody raised against LHCI from barley thylakoids. A complex designated Chla.P2, which was capable of electron transport from diphenylcarbazide to 2,6-dichlorophenolindophenol, was isolated by nondenaturing gel electrophoresis. It lacked CP43, which therefore can be excluded as an essential component of the photosystem II reaction center core. Fractionation of octyl glucoside-solubilized photosystem II membranes in the presence and absence of Mg2+ enabled the isolation of the Chla . P2 complex and revealed the existence of a light-harvesting complex consisting of CP29, CP26, and CP24. This complex and the major light-harvesting system (LHCII) are postulated to transfer excitation energy independently to the photosystem II reaction center via CP43.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In their natural environment, plants are exposed to varying light conditions, which can lead to a build-up of excitation energy in photosystem (PS) II. Non-photochemical quenching (NPQ) is the primary defence mechanism employed to dissipate this excess energy. Recently, we developed a fluorescence-quenching analysis procedure that enables the protective effectiveness of NPQ in intact Arabidopsis leaves to be determined. However, pulse-amplitude modulation measurements do not currently allow distinguishing between PSII and PSI fluorescence levels. Failure to account for PSI contribution is suggested to lead to inaccurate measurements of NPQ and, particularly, maximum PSII yield (F v/F m). Recently, Pfündel et al. (Photosynth Res 114:189-206, 2013) proposed a method that takes into account PSI contribution in the measurements of F o fluorescence level. However, when PSI contribution was assumed to be constant throughout the induction of NPQ, we observed lower values of the measured minimum fluorescence level ([Formula: see text]) than those calculated according to the formula of Oxborough and Baker (Photosynth Res 54:135-142 1997) ([Formula: see text]), regardless of the light intensity. Therefore, in this work, we propose a refined model to correct for the presence of PSI fluorescence, which takes into account the previously observed NPQ in PSI. This method efficiently resolves the discrepancies between measured and calculated F o' produced by assuming a constant PSI fluorescence contribution, whilst allowing for the correction of the maximum PSII yield.
    Photosynthesis Research 01/2015; DOI:10.1007/s11120-015-0087-z · 3.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxygenic photosynthesis is indispensable both for the development and maintenance of life on earth by converting light energy into chemical energy and by producing molecular oxygen and consuming carbon dioxide. This latter process has been responsible for reducing the CO2 from its very high levels in the primitive atmosphere to the present low levels and thus reducing global temperatures to levels conducive to the development of life. Photosystem I and photosystem II are the two multi-protein complexes that contain the pigments necessary to harvest photons and use light energy to catalyse the primary photosynthetic endergonic reactions producing high energy compounds. Both photosystems are highly organised membrane supercomplexes composed of a core complex, containing the reaction centre where electron transport is initiated, and of a peripheral antenna system, which is important for light harvesting and photosynthetic activity regulation. If on the one hand both the chemical reactions catalysed by the two photosystems and their detailed structure are different, on the other hand they share many similarities. In this review we discuss and compare various aspects of the organisation, functioning and regulation of plant photosystems by comparing them for similarities and differences as obtained by structural, biochemical and spectroscopic investigations.
    Current Protein and Peptide Science 03/2014; DOI:10.2174/1389203715666140327102218 · 2.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The efficiency of protective energy dissipation by non-photochemical quenching (NPQ) in photosystem II (PSII) has been recently quantified by a new non-invasive photochemical quenching parameter, qPd. PSII yield (ФPSII) was expressed in terms of NPQ, and the extent of damage to the reaction centres (RCIIs) was calculated via qPd as: ФPSII=qPd×(F v/F m)/{1+[1-(F v/F m)]×NPQ}. Here this approach was used to determine the amount of NPQ required to protect all PSII reaction centres (pNPQ) under a gradually increasing light intensity, in the zeaxanthin-deficient (npq1) Arabidopsis mutant, compared with PsbS protein-deficient (npq4) and wild-type plants. The relationship between maximum pNPQ and tolerated light intensity for all plant genotypes followed similar trends. These results suggest that under a gradually increasing light intensity, where pNPQ is allowed to develop, it is only the amplitude of pNPQ which is the determining factor for protection. However, the use of a sudden constant high light exposure routine revealed that the presence of PsbS, not zeaxanthin, offered better protection for PSII. This was attributed to a slower development of pNPQ in plants lacking PsbS in comparison with plants that lacked zeaxanthin. This research adds further support to the value of pNPQ and qPd as effective parameters for assessing NPQ effectiveness in different types of plants. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
    Journal of Experimental Botany 11/2014; DOI:10.1093/jxb/eru477 · 5.79 Impact Factor

Full-text (2 Sources)

Available from
Jun 2, 2014