### Full-text

Irfan Acikgoz, Jul 29, 2013 Available from:- References (10)
- Cited In (0)

- [Show abstract] [Hide abstract]

**ABSTRACT:**Energy-momentum is an important conserved quantity whose definition has been a focus of many investigations in general relativity. Unfortunately, there is still no generally accepted definition of energy and momentum in general relativity. Attempts aimed at finding a quantity for describing distribution of energy-momentum due to matter, non-gravitational and gravitational fields resulted in various energy-momentum complexes whose physical meaning have been questioned. The problems associated with energy-momentum complexes resulted in some researchers even abandoning the concept of energy-momentum localization in favour of the alternative concept of quasi-localization. However, quasi-local masses have their inadequacies, while the remarkable work of Virbhadra and some others, and recent results of Cooperstock and Chang {\it et al.} have revived an interest in various energy-momentum complexes. Hence in this work we use energy-momentum complexes to obtain the energy distributions in various space-times. We elaborate on the problem of energy localization in general relativity and use energy-momentum prescriptions of Einstein, Landau and Lifshitz, Papapetrou, Weinberg, and M{\o}ller to investigate energy distributions in various space-times. It is shown that several of these energy-momentum complexes give the same and acceptable results for a given space-time. This shows the importance of these energy-momentum complexes. Our results agree with Virbhadra's conclusion that the Einstein's energy-momentum complex is still the best tool for obtaining energy distribution in a given space-time. The Cooperstock hypothesis for energy localization in GR is also supported. - [Show abstract] [Hide abstract]

**ABSTRACT:**I find the most general spherically symmetric nonsingular black hole solution in a special class of teleparallel theory of gravitation. If r is large enough, the general solution coincides with the Schwarzschild solution. Whereas, if r is small, the general solution behaves in a manner similar to that of a de Sitter solution. Otherwise it describes a spherically symmetric black hole singularity free everywhere. Moreover, the energy associated with the general solution is calculated using the superpotential given by Møller.Physical review D: Particles and fields 09/2002; 66(6). DOI:10.1103/PhysRevD.66.064015 · 4.86 Impact Factor - [Show abstract] [Hide abstract]

**ABSTRACT:**In this paper, we observe that the brane functional studied in hep-th/9910245 can be used to generalize some of the works that Schoen and I [4] did many years ago. The key idea is that if a three dimensional manifold M has a boundary with strongly positive mean curvature, the effect of this mean curvature can influence the internal geometry of M. For example, if the scalar curvature of M is greater than certain constant related to this boundary effect, no incompressible surface of higher genus can exist.Advances in Theoretical and Mathematical Physics 10/2001; · 1.78 Impact Factor