Article

Corticotropin-releasing factor in the adrenal medulla.

Division of Endocrinology, Rhode Island Hospital/Brown University, Providence 02902.
Annals of the New York Academy of Sciences (Impact Factor: 4.38). 02/1987; 512:115-28. DOI: 10.1111/j.1749-6632.1987.tb24954.x
Source: PubMed

ABSTRACT Immunoreactive and bioactive corticotropin-releasing factor has been identified in the adrenal gland of dogs, rats and humans. Radioimmunoassay and immunohistochemical experiments have clearly demonstrated that localization of the peptide is confined to the adrenal medulla. CRF-containing cells have a characteristic appearance and are often found in close association with blood vessels. Electron microscopic studies suggest that CRF is secreted at blood vessels within the adrenal medullary vasculature. CRF has also been identified in pheochromocytomas. The amount of the peptide made by such tumors is highly variable as the CRF content of pheochromocytomas may be 20 to 100 times higher or lower than that of normal adrenal tissue. The pathophysiological importance of CRF in pheochromocytomas is unknown. Excessive secretion of the peptide into the peripheral circulation may cause prolonged activation of the pituitary adrenal axis. The peptide may also act within the tumor, although its role remains obscure. Studies on chronically cannulated, awake dogs have shown that CRF is secreted into adrenal venous blood. A gradient exists between adrenal venous and peripheral arterial blood, as CRF is undetectable peripherally under resting conditions. Hemorrhage, a hemodynamic stimulus known to activate a sympathetic adrenal response, increases the CRF secretory rate. The time course of CRF secretion in response to this stimulus parallels that of epinephrine secretion. The physiological significance of adrenal medullary CRF remains to be determined. Although CRF has been shown to affect catecholamine secretion, the peptide appears to be only a weak secretagogue for catecholamines. We suggest that CRF may affect local blood flow within the adrenal medulla and may modify catecholamine secretory rates via this mechanism. The localization of CRF cells in close apposition to blood vessels supports this hypothesis.

0 Bookmarks
 · 
75 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The corticotropin-releasing factor (CRF) system plays a crucial regulatory role in the adaptation to exogenous and endogenous stress stimuli, as well as homeostasis. Apart from the central nervous system (CNS), the members of this neuropeptide family extend their actions in the periphery, where they may affect various body systems independently, stimulating peripheral CRF receptors via vagal and/or autocrine/paracrine pathways. Here, we review all findings concerning the expression and role of the CRF system in human liver, but also in other species. Direct and indirect regulatory data are also analyzed in order to draw conclusions about possible physiological/pathophysiological implications. Although data supporting any clinical significance are still limited and further research in the field is necessary, scientific interest in the CRF system is particularly active, with multiple ongoing clinical studies evaluating the activity of CRF ligands in medical conditions involving other organs. Thus, new knowledge with therapeutic potential appears to be steadily accumulating.
    Hormones (Athens, Greece) 04/2012; 12(2):236-45. · 2.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Corticotropin-releasing factor (CRF) plays a central role in the regulation of the stress axis. In mammals, CRF as well as its receptors and its CRF-binding protein (CRF-BP) are expressed in a variety of organs and tissues outside the central nervous system. One of these extrahypothalamic sites is the adrenal gland, where the paracrine actions of adrenal CRF influence cortical steroidogenesis and adrenal blood flow. Although the central role of CRF signaling in the initiation and regulation of the stress response has now been established throughout vertebrates, information about the possible peripheral presence of CRF in earlier vertebrate lineages is scant. We established the expression of CRF, CRF-BP, and the CRF receptor 1 in a panel of peripheral organs of common carp (Cyprinus carpio). Out of all the peripheral organs tested, CRF and CRF-BP are most abundantly expressed in the carp head kidney, the fish equivalent of the mammalian adrenal gland. This expression localizes to chromaffin cells. Furthermore, detectable quantities of CRF are released from the intact head kidney following in vitro stimulation with 8-bromo-cAMP in a superfusion setup. The presence of CRF and CRF-BP within the chromaffin compartment of the head kidney suggests that a pathway homologous to the mammalian intra-adrenal CRF system is present in the head kidney of fish. It follows that such a system to locally fine-tune the outcome of the centrally initiated stress response has been an integral part of the vertebrate endocrine system since the common ancestor of teleostean fishes and mammals.
    Journal of Endocrinology 07/2007; 193(3):349-57. · 4.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Corticotropin-releasing factor (CRF), also termed corticotropin-releasing hormone (CRH) or corticoliberin, is the major regulator of the adaptive response to internal or external stresses. An essential component of the adaptation mechanism is the adrenal gland. CRF regulates adrenal function indirectly through the central nervous system (CNS) via the hypothalamic-pituitary-adrenal (HPA) axis and via the autonomic nervous system by way of locus coeruleus (LC) in the brain stem. Accumulating evidence suggests that CRF and its related peptides also affect the adrenals directly, i.e. not through the CNS but from within the adrenal gland where they form paracrine regulatory loops. Indeed, CRF and its related peptides, the urocortins (UCNs: UCN1, UCN2 and UCN3), their receptors CRF type 1 (CRF(1)) and 2 (CRF(2)) as well as the endogenous pseudo-receptor CRF-binding protein (CRF-BP) are all expressed in adrenal cortical, medullary chromaffin and resident immune cells. The intra-adrenal CRF-based regulatory system is complex and depends on the balance between the local concentration of CRF ligands and the availability of their receptors.
    Cellular and Molecular Life Sciences CMLS 08/2007; 64(13):1638-55. · 5.62 Impact Factor